Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática

Descripción del Articulo

Indexado en DOAJ
Detalles Bibliográficos
Autor: Hermitaño Castro, Juler Anderson
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17392
Enlace del recurso:https://hdl.handle.net/20.500.12724/17392
https://doi.org/10.26439/interfases2022.n015.5898
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Administración de riesgos
Gestión del crédito
Machine learning
Risk management
Credit management
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_faf5adc023803f63c21075fb6aebe442
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/17392
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
title Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
spellingShingle Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
Hermitaño Castro, Juler Anderson
Aprendizaje automático
Administración de riesgos
Gestión del crédito
Machine learning
Risk management
Credit management
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
title_full Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
title_fullStr Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
title_full_unstemmed Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
title_sort Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
author Hermitaño Castro, Juler Anderson
author_facet Hermitaño Castro, Juler Anderson
author_role author
dc.contributor.student.none.fl_str_mv Hermitaño Castro, Juler Anderson (Ingeniería de Sistemas)
dc.contributor.author.fl_str_mv Hermitaño Castro, Juler Anderson
dc.subject.es_PE.fl_str_mv Aprendizaje automático
Administración de riesgos
Gestión del crédito
topic Aprendizaje automático
Administración de riesgos
Gestión del crédito
Machine learning
Risk management
Credit management
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.en_EN.fl_str_mv Machine learning
Risk management
Credit management
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Indexado en DOAJ
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-01-18T18:39:28Z
dc.date.issued.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.citation.es_PE.fl_str_mv Hermitaño Castro, J. A. (2022). Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática. Interfases, (15), 160-178. https://doi.org/10.26439/interfases2022.n015.5898
dc.identifier.issn.none.fl_str_mv 1993-4912
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/17392
dc.identifier.journal.none.fl_str_mv Interfases
dc.identifier.doi.none.fl_str_mv https://doi.org/10.26439/interfases2022.n015.5898
identifier_str_mv Hermitaño Castro, J. A. (2022). Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática. Interfases, (15), 160-178. https://doi.org/10.26439/interfases2022.n015.5898
1993-4912
Interfases
url https://hdl.handle.net/20.500.12724/17392
https://doi.org/10.26439/interfases2022.n015.5898
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:issn:1993-4912
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17392/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17392/3/license.txt
bitstream.checksum.fl_str_mv 8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1845977497898844160
spelling Hermitaño Castro, Juler AndersonHermitaño Castro, Juler Anderson (Ingeniería de Sistemas)2023-01-18T18:39:28Z2022Hermitaño Castro, J. A. (2022). Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática. Interfases, (15), 160-178. https://doi.org/10.26439/interfases2022.n015.58981993-4912https://hdl.handle.net/20.500.12724/17392Interfaseshttps://doi.org/10.26439/interfases2022.n015.5898Indexado en DOAJRevista indexada en DOAJLa gestión de riesgos bancarios puede ser dividida en las siguientes tipologías: riesgo crediticio, riesgo de mercado, riesgo operativo y riesgo de liquidez, siendo el primero el tipo de riesgo más importante para el sector financiero. El presente artículo tiene como objetivo mostrar las ventajas y desventajas de la implementación de los algoritmos de machine learning en la gestión de riesgos de crédito y, a partir de esto, mostrar cuál tiene mejor rendimiento, señalando también las desventajas que puedan presentar. Para ello se realizó una revisión sistemática de la literatura con la estrategia de búsqueda PICo y se seleccionaron doce artículos. Los resultados reflejan que el riesgo de crédito es el de mayor relevancia. Además, algunos de los algoritmos de machine learning ya han comenzado a implementarse, sin embargo, algunos presentan desventajas resaltantes como el no poder explicar el funcionamiento del modelo y ser considerados como caja negra. En ese sentido, desfavorece la implementación debido a que los organismos regulatorios exigen que un modelo deba ser explicable, interpretable y transparente. Frente a ello, se ha optado por realizar modelos híbridos con algoritmos que no son sencillos de explicar, como aquellos modelos tradicionales de regresión logística. También, se presenta como alternativa utilizar métodos como SHAPley Additive exPlanations (SHAP) que ayudan a la interpretación de dichos modelos.Revisión por paresapplication/pdfspaUniversidad de LimaPEurn:issn:1993-4912info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAprendizaje automáticoAdministración de riesgosGestión del créditoMachine learningRisk managementCredit managementhttps://purl.org/pe-repo/ocde/ford#2.02.04Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemáticainfo:eu-repo/semantics/articleArtículoCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17392/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17392/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/17392oai:repositorio.ulima.edu.pe:20.500.12724/173922024-10-23 11:34:39.731Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.04064
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).