The use of artificial intelligence to identify objects in a construction site
Descripción del Articulo
Artículo presentado en el International Conference on Artificial Intelligence and Energy System (ICAIES-2021) in Virtual Mode, llevada a cabo el 12 y 13 de junio del 2021. Los datos de investigación están disponibles en la siguiente dirección https://doi.org/10.26439/ulima.datasets.13359
Autores: | , , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2021 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/14933 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/14933 http://doi.org/10.26439/ulima.prep.14933 |
Nivel de acceso: | acceso abierto |
Materia: | Artificial intelligence Machine learning Computer vision techniques Neural network models Construction monitoring https://purl.org/pe-repo/ocde/ford#2.01.01 |
id |
RULI_cd7831b0d51890cc72c8a229342b8730 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/14933 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.es_PE.fl_str_mv |
The use of artificial intelligence to identify objects in a construction site |
title |
The use of artificial intelligence to identify objects in a construction site |
spellingShingle |
The use of artificial intelligence to identify objects in a construction site Del Savio, Alexandre Almeida Artificial intelligence Machine learning Computer vision techniques Neural network models Construction monitoring https://purl.org/pe-repo/ocde/ford#2.01.01 |
title_short |
The use of artificial intelligence to identify objects in a construction site |
title_full |
The use of artificial intelligence to identify objects in a construction site |
title_fullStr |
The use of artificial intelligence to identify objects in a construction site |
title_full_unstemmed |
The use of artificial intelligence to identify objects in a construction site |
title_sort |
The use of artificial intelligence to identify objects in a construction site |
author |
Del Savio, Alexandre Almeida |
author_facet |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
author_role |
author |
author2 |
Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
author2_role |
author author author author |
dc.contributor.other.none.fl_str_mv |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra |
dc.contributor.student.none.fl_str_mv |
Urday Ibarra, Gianella Tania (Ingeniería de Sistemas) |
dc.contributor.author.fl_str_mv |
Del Savio, Alexandre Almeida Luna Torres, Ana Felícita Cárdenas Salas, Daniel Enrique Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
dc.subject.es_PE.fl_str_mv |
Artificial intelligence Machine learning Computer vision techniques Neural network models Construction monitoring |
topic |
Artificial intelligence Machine learning Computer vision techniques Neural network models Construction monitoring https://purl.org/pe-repo/ocde/ford#2.01.01 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.01.01 |
description |
Artículo presentado en el International Conference on Artificial Intelligence and Energy System (ICAIES-2021) in Virtual Mode, llevada a cabo el 12 y 13 de junio del 2021. Los datos de investigación están disponibles en la siguiente dirección https://doi.org/10.26439/ulima.datasets.13359 |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-01-26T22:59:40Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.other.none.fl_str_mv |
Artículo de conferencia |
format |
conferenceObject |
dc.identifier.citation.es_PE.fl_str_mv |
Almeida Del Savio, A., Luna, A., Cárdenas-Salas, D., Vergara Olivera, M. & Urday Ibarra, G. (2021). The use of artificial intelligence to identify objects in a construction site. International Conference on Artificial Intelligence and Energy System (ICAIES) in Virtual Mode, Jaipur, India. http://doi.org/10.26439/ulima.prep.14933 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/14933 |
dc.identifier.event.none.fl_str_mv |
International Conference on Artificial Intelligence and Energy System (ICAIES) |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.26439/ulima.prep.14933 |
identifier_str_mv |
Almeida Del Savio, A., Luna, A., Cárdenas-Salas, D., Vergara Olivera, M. & Urday Ibarra, G. (2021). The use of artificial intelligence to identify objects in a construction site. International Conference on Artificial Intelligence and Energy System (ICAIES) in Virtual Mode, Jaipur, India. http://doi.org/10.26439/ulima.prep.14933 International Conference on Artificial Intelligence and Energy System (ICAIES) |
url |
https://hdl.handle.net/20.500.12724/14933 http://doi.org/10.26439/ulima.prep.14933 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.none.fl_str_mv |
https://doi.org/10.26439/ulima.datasets.13359 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/5/210421-The%20use%20of%20artificial%20intelligence%20to%20identify%20objects%20in%20the%20construction%20site.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/1/210421-The%20use%20of%20artificial%20intelligence%20to%20identify%20objects%20in%20the%20construction%20site.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/4/210421-The%20use%20of%20artificial%20intelligence%20to%20identify%20objects%20in%20the%20construction%20site.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/2/license_rdf |
bitstream.checksum.fl_str_mv |
d08790651852b53999370368cdf8522f 8a4605be74aa9ea9d79846c1fba20a33 9443f7e4833d22c87f438cce6345d63a ba044b7af67d08b8ec8890a1e2506b3f 3655808e5dd46167956d6870b0f43800 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1844709867044995072 |
spelling |
Del Savio, Alexandre AlmeidaLuna Torres, Ana FelícitaCárdenas Salas, Daniel EnriqueVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella TaniaDel Savio, Alexandre AlmeidaLuna Torres, Ana FelícitaCárdenas Salas, Daniel EnriqueVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella Tania (Ingeniería de Sistemas)2022-01-26T22:59:40Z2021Almeida Del Savio, A., Luna, A., Cárdenas-Salas, D., Vergara Olivera, M. & Urday Ibarra, G. (2021). The use of artificial intelligence to identify objects in a construction site. International Conference on Artificial Intelligence and Energy System (ICAIES) in Virtual Mode, Jaipur, India. http://doi.org/10.26439/ulima.prep.14933https://hdl.handle.net/20.500.12724/14933International Conference on Artificial Intelligence and Energy System (ICAIES)http://doi.org/10.26439/ulima.prep.14933Artículo presentado en el International Conference on Artificial Intelligence and Energy System (ICAIES-2021) in Virtual Mode, llevada a cabo el 12 y 13 de junio del 2021. Los datos de investigación están disponibles en la siguiente dirección https://doi.org/10.26439/ulima.datasets.13359The construction industry invests a large amount of effort and resources in construction processes such as the follow-up, control, and monitoring of construction works, which, compared to other areas, present a low level of automation. Thus, increasing automation would reduce the times and costs of such activities. This research aims to evaluate a computer vision technique to identify objects of interest in construction sites, from videos and images of drones and static surveillance cameras. The "You Look Only Once" (YOLO) object detection neural network was used to identify eight classes of objects in 1000 drone images and 1046 static camera images of a construction site, achieving an accuracy varying between 78.8% to 82.8% and 73.56% to 93.76%, respectively. The feasibility of using classification algorithms to identify complex objects such as trucks and cranes was verified. Its application can be extended to various other forms to have an intelligent and automated process of monitoring and control project construction activities.Revisión por paresapplication/pdfengUniversidad de LimaPEhttps://doi.org/10.26439/ulima.datasets.13359info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAArtificial intelligenceMachine learningComputer vision techniquesNeural network modelsConstruction monitoringhttps://purl.org/pe-repo/ocde/ford#2.01.01The use of artificial intelligence to identify objects in a construction siteinfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaTHUMBNAIL210421-The use of artificial intelligence to identify objects in the construction site.pdf.jpg210421-The use of artificial intelligence to identify objects in the construction site.pdf.jpgGenerated Thumbnailimage/jpeg16669https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/5/210421-The%20use%20of%20artificial%20intelligence%20to%20identify%20objects%20in%20the%20construction%20site.pdf.jpgd08790651852b53999370368cdf8522fMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINAL210421-The use of artificial intelligence to identify objects in the construction site.pdf210421-The use of artificial intelligence to identify objects in the construction site.pdfDescargarapplication/pdf721297https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/1/210421-The%20use%20of%20artificial%20intelligence%20to%20identify%20objects%20in%20the%20construction%20site.pdf9443f7e4833d22c87f438cce6345d63aMD51TEXT210421-The use of artificial intelligence to identify objects in the construction site.pdf.txt210421-The use of artificial intelligence to identify objects in the construction site.pdf.txtExtracted texttext/plain18510https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/4/210421-The%20use%20of%20artificial%20intelligence%20to%20identify%20objects%20in%20the%20construction%20site.pdf.txtba044b7af67d08b8ec8890a1e2506b3fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ulima.edu.pe/bitstream/20.500.12724/14933/2/license_rdf3655808e5dd46167956d6870b0f43800MD5220.500.12724/14933oai:repositorio.ulima.edu.pe:20.500.12724/149332024-10-23 11:35:23.507Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
12.9067135 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).