Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification

Descripción del Articulo

Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the d...

Descripción completa

Detalles Bibliográficos
Autores: Ayma Quirita, Victor Hugo, Ayma, V. A., Gutiérrez Cárdenas, Juan Manuel
Formato: objeto de conferencia
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/11570
Enlace del recurso:https://hdl.handle.net/20.500.12724/11570
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
Nivel de acceso:acceso abierto
Materia:Imágenes hiperespectrales
Reducción de dimensión (estadísticas)
Redes neuronales (Informática)
Hyperspectral Imaging
Dimension reduction (statistics)
Neural networks (Computer science)
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images remains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on autoencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).