Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics

Descripción del Articulo

Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of se...

Descripción completa

Detalles Bibliográficos
Autores: Huancayo Ramos, Katherinne Shirley, Sotelo Monge, Marco Antonio, Maestre Vidal, Jorge
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/11484
Enlace del recurso:https://hdl.handle.net/20.500.12724/11484
https://doi.org/10.3390/s20164501
Nivel de acceso:acceso abierto
Materia:Informatic security
Malware (Computer programs)
Botnet
Seguridad informática
Malware (Programas de ordenador)
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_adf0972f6fcd66184000e35fd42158e2
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/11484
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
spellingShingle Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
Huancayo Ramos, Katherinne Shirley
Informatic security
Malware (Computer programs)
Botnet
Seguridad informática
Malware (Programas de ordenador)
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title_full Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title_fullStr Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title_full_unstemmed Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
title_sort Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
author Huancayo Ramos, Katherinne Shirley
author_facet Huancayo Ramos, Katherinne Shirley
Sotelo Monge, Marco Antonio
Maestre Vidal, Jorge
author_role author
author2 Sotelo Monge, Marco Antonio
Maestre Vidal, Jorge
author2_role author
author
dc.contributor.other.none.fl_str_mv Huancayo Ramos, Katherinne Shirley
Sotelo Monge, Marco Antonio
dc.contributor.author.fl_str_mv Huancayo Ramos, Katherinne Shirley
Sotelo Monge, Marco Antonio
Maestre Vidal, Jorge
dc.subject.en_EN.fl_str_mv Informatic security
Malware (Computer programs)
topic Informatic security
Malware (Computer programs)
Botnet
Seguridad informática
Malware (Programas de ordenador)
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Botnet
Seguridad informática
Malware (Programas de ordenador)
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-27T19:44:53Z
dc.date.available.none.fl_str_mv 2020-08-27T19:44:53Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Huancayo Ramos, K. S., Sotelo Monge, M. A. & Maestre Vidal, J. (2020). Benchmak-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics. Sensors, 20(16), 2-31. https://doi.org/10.3390/s20164501
dc.identifier.issn.none.fl_str_mv 1424-8220
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/11484
dc.identifier.journal.none.fl_str_mv Sensors
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/s20164501
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85089611710
identifier_str_mv Huancayo Ramos, K. S., Sotelo Monge, M. A. & Maestre Vidal, J. (2020). Benchmak-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics. Sensors, 20(16), 2-31. https://doi.org/10.3390/s20164501
1424-8220
Sensors
0000000121541816
2-s2.0-85089611710
url https://hdl.handle.net/20.500.12724/11484
https://doi.org/10.3390/s20164501
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1424-8220
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.country.none.fl_str_mv CH
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11484/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11484/2/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1844709972618772480
spelling Huancayo Ramos, Katherinne ShirleySotelo Monge, Marco AntonioMaestre Vidal, JorgeHuancayo Ramos, Katherinne ShirleySotelo Monge, Marco Antonio2020-08-27T19:44:53Z2020-08-27T19:44:53Z2020Huancayo Ramos, K. S., Sotelo Monge, M. A. & Maestre Vidal, J. (2020). Benchmak-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics. Sensors, 20(16), 2-31. https://doi.org/10.3390/s201645011424-8220https://hdl.handle.net/20.500.12724/11484Sensors0000000121541816https://doi.org/10.3390/s201645012-s2.0-85089611710Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns.application/htmlengMultidisciplinary Digital Publishing Institute (MDPI)CHurn:issn:1424-8220info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAInformatic securityMalware (Computer programs)BotnetSeguridad informáticaMalware (Programas de ordenador)https://purl.org/pe-repo/ocde/ford#2.02.04Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analyticsinfo:eu-repo/semantics/articleArtículo en ScopusHuancayo Ramos, Katherinne ShirleySotelo Monge, Marco Antonio (Ingeniería Industrial)Huancayo Ramos, Katherinne Shirley (Faculty of Engineering and Architecture, Universidad de Lima)Sotelo Monge, Marco Antonio (Faculty of Engineering and Architecture, Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11484/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11484/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/11484oai:repositorio.ulima.edu.pe:20.500.12724/114842025-03-06 19:40:01.732Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.849147
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).