Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics
Descripción del Articulo
Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of se...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/11484 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/11484 https://doi.org/10.3390/s20164501 |
Nivel de acceso: | acceso abierto |
Materia: | Informatic security Malware (Computer programs) Botnet Seguridad informática Malware (Programas de ordenador) https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
RULI_adf0972f6fcd66184000e35fd42158e2 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/11484 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics |
title |
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics |
spellingShingle |
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics Huancayo Ramos, Katherinne Shirley Informatic security Malware (Computer programs) Botnet Seguridad informática Malware (Programas de ordenador) https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics |
title_full |
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics |
title_fullStr |
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics |
title_full_unstemmed |
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics |
title_sort |
Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics |
author |
Huancayo Ramos, Katherinne Shirley |
author_facet |
Huancayo Ramos, Katherinne Shirley Sotelo Monge, Marco Antonio Maestre Vidal, Jorge |
author_role |
author |
author2 |
Sotelo Monge, Marco Antonio Maestre Vidal, Jorge |
author2_role |
author author |
dc.contributor.other.none.fl_str_mv |
Huancayo Ramos, Katherinne Shirley Sotelo Monge, Marco Antonio |
dc.contributor.author.fl_str_mv |
Huancayo Ramos, Katherinne Shirley Sotelo Monge, Marco Antonio Maestre Vidal, Jorge |
dc.subject.en_EN.fl_str_mv |
Informatic security Malware (Computer programs) |
topic |
Informatic security Malware (Computer programs) Botnet Seguridad informática Malware (Programas de ordenador) https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
Botnet Seguridad informática Malware (Programas de ordenador) |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-08-27T19:44:53Z |
dc.date.available.none.fl_str_mv |
2020-08-27T19:44:53Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Huancayo Ramos, K. S., Sotelo Monge, M. A. & Maestre Vidal, J. (2020). Benchmak-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics. Sensors, 20(16), 2-31. https://doi.org/10.3390/s20164501 |
dc.identifier.issn.none.fl_str_mv |
1424-8220 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/11484 |
dc.identifier.journal.none.fl_str_mv |
Sensors |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/s20164501 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85089611710 |
identifier_str_mv |
Huancayo Ramos, K. S., Sotelo Monge, M. A. & Maestre Vidal, J. (2020). Benchmak-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics. Sensors, 20(16), 2-31. https://doi.org/10.3390/s20164501 1424-8220 Sensors 0000000121541816 2-s2.0-85089611710 |
url |
https://hdl.handle.net/20.500.12724/11484 https://doi.org/10.3390/s20164501 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:1424-8220 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.publisher.country.none.fl_str_mv |
CH |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11484/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11484/2/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fc46f5e71650fd7adee84a69b9163c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1844709972618772480 |
spelling |
Huancayo Ramos, Katherinne ShirleySotelo Monge, Marco AntonioMaestre Vidal, JorgeHuancayo Ramos, Katherinne ShirleySotelo Monge, Marco Antonio2020-08-27T19:44:53Z2020-08-27T19:44:53Z2020Huancayo Ramos, K. S., Sotelo Monge, M. A. & Maestre Vidal, J. (2020). Benchmak-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analytics. Sensors, 20(16), 2-31. https://doi.org/10.3390/s201645011424-8220https://hdl.handle.net/20.500.12724/11484Sensors0000000121541816https://doi.org/10.3390/s201645012-s2.0-85089611710Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns.application/htmlengMultidisciplinary Digital Publishing Institute (MDPI)CHurn:issn:1424-8220info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAInformatic securityMalware (Computer programs)BotnetSeguridad informáticaMalware (Programas de ordenador)https://purl.org/pe-repo/ocde/ford#2.02.04Benchmark-Based Reference Model for Evaluating Botnet Detection Tools Driven by Traffic-Flow Analyticsinfo:eu-repo/semantics/articleArtículo en ScopusHuancayo Ramos, Katherinne ShirleySotelo Monge, Marco Antonio (Ingeniería Industrial)Huancayo Ramos, Katherinne Shirley (Faculty of Engineering and Architecture, Universidad de Lima)Sotelo Monge, Marco Antonio (Faculty of Engineering and Architecture, Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11484/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/11484/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/11484oai:repositorio.ulima.edu.pe:20.500.12724/114842025-03-06 19:40:01.732Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
12.849147 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).