Big data classification using fuzzy logical concepts for paddy yield prediction

Descripción del Articulo

Time association data has been critical to the exploration field of paddy yield forecast. At durations the path of recent many years, countless flossy legitimate time arrangement. For this reason, this paper canters round searching forward to statistics esteems on a huge variety of flossy precept ca...

Descripción completa

Detalles Bibliográficos
Autores: Roca Cedeño, Jacinto Alex, García López, Yván Jesús, Neira-Molina, Harold, Morales-Ortega, Roberto, Combita-Niño, H., Choque Flores, Leopoldo
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/19564
Enlace del recurso:https://hdl.handle.net/20.500.12724/19564
https://doi.org/10.48047/rigeo.11.05.326
Nivel de acceso:acceso abierto
Materia:Fuzzy Logic
Rice
Big data
Lógica difusa
Arroz
https://purl.org/pe-repo/ocde/ford#4.01.01
id RULI_a24dbd69fdcefdf0b7dc02a3f7118215
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/19564
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
spelling Roca Cedeño, Jacinto AlexGarcía López, Yván JesúsNeira-Molina, HaroldMorales-Ortega, RobertoCombita-Niño, H.Choque Flores, LeopoldoGarcía López, Yván Jesús2024-01-11T15:50:28Z2024-01-11T15:50:28Z2021Roca Cedeño, J. A., García - López, Y. J., Choque Flores, L. Morales-Ortega, R. Neira-Molina, H. & Combita-Niño, H. (2021). Big data classification using fuzzy logical concepts for paddy yield prediction. Review of International Geographical Education Online, 11(5), 4482-4490. https://doi.org/10.48047/rigeo.11.05.3262146-0353https://hdl.handle.net/20.500.12724/19564Review of International Geographical Education Online0000000121541816https://doi.org/10.48047/rigeo.11.05.3262-s2.0-85117203811Time association data has been critical to the exploration field of paddy yield forecast. At durations the path of recent many years, countless flossy legitimate time arrangement. For this reason, this paper canters round searching forward to statistics esteems on a huge variety of flossy precept calculations. To clarify the approach in the course of gauging, the verifiable statistics of paddy yield. The method for acknowledgment used at some point of this exam can also be an extreme information grouping. The technique joins the coaching capacities of fake neural device with the human like data portrayal and clarification capacities of flossy precept frameworks and furthermore a trendy primarily based in maximum instances hold close framework. It's miles for the most half of used in Brobdingnagian expertise getting equipped applications. As we have a tendency to in all opportunity am aware, affiliation method of massive information teams the information into thousands of categories addicted to high-quality trends for additional getting equipped. We've got engineered up some other calculation to have an effect on the grouping by using flossy recommendations on this present fact informational index. Forecast of harvest yield is significant because of this on precisely meet marketplace conditions and legitimate company of rural sports coordinated towards enhance in yield. A number of obstacles, as an example, weather, bothers, biophysical and physio morphological highlights advantage their idea whereas determining the yield. It's in reality proper right here that the flossy precept becomes partner in Nursing important issue. This paper explains a shot to create flossy valid frameworks for paddy crop yield expectation.application/htmlengEskisehir Osmangazi UniversityTRurn:issn: 2146-0353info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAFuzzy LogicRiceBig dataLógica difusaArrozhttps://purl.org/pe-repo/ocde/ford#4.01.01Big data classification using fuzzy logical concepts for paddy yield predictioninfo:eu-repo/semantics/articleArtículo en ScopusPendientePendiente1520.500.12724/19564oai:repositorio.ulima.edu.pe:20.500.12724/195642024-11-08 16:16:06.877Repositorio Universidad de Limarepositorio@ulima.edu.pe
dc.title.en_EN.fl_str_mv Big data classification using fuzzy logical concepts for paddy yield prediction
title Big data classification using fuzzy logical concepts for paddy yield prediction
spellingShingle Big data classification using fuzzy logical concepts for paddy yield prediction
Roca Cedeño, Jacinto Alex
Fuzzy Logic
Rice
Big data
Lógica difusa
Arroz
https://purl.org/pe-repo/ocde/ford#4.01.01
title_short Big data classification using fuzzy logical concepts for paddy yield prediction
title_full Big data classification using fuzzy logical concepts for paddy yield prediction
title_fullStr Big data classification using fuzzy logical concepts for paddy yield prediction
title_full_unstemmed Big data classification using fuzzy logical concepts for paddy yield prediction
title_sort Big data classification using fuzzy logical concepts for paddy yield prediction
author Roca Cedeño, Jacinto Alex
author_facet Roca Cedeño, Jacinto Alex
García López, Yván Jesús
Neira-Molina, Harold
Morales-Ortega, Roberto
Combita-Niño, H.
Choque Flores, Leopoldo
author_role author
author2 García López, Yván Jesús
Neira-Molina, Harold
Morales-Ortega, Roberto
Combita-Niño, H.
Choque Flores, Leopoldo
author2_role author
author
author
author
author
dc.contributor.other.none.fl_str_mv García López, Yván Jesús
dc.contributor.author.fl_str_mv Roca Cedeño, Jacinto Alex
García López, Yván Jesús
Neira-Molina, Harold
Morales-Ortega, Roberto
Combita-Niño, H.
Choque Flores, Leopoldo
dc.subject.en_EN.fl_str_mv Fuzzy Logic
Rice
topic Fuzzy Logic
Rice
Big data
Lógica difusa
Arroz
https://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.es_PE.fl_str_mv Big data
Lógica difusa
Arroz
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.01
description Time association data has been critical to the exploration field of paddy yield forecast. At durations the path of recent many years, countless flossy legitimate time arrangement. For this reason, this paper canters round searching forward to statistics esteems on a huge variety of flossy precept calculations. To clarify the approach in the course of gauging, the verifiable statistics of paddy yield. The method for acknowledgment used at some point of this exam can also be an extreme information grouping. The technique joins the coaching capacities of fake neural device with the human like data portrayal and clarification capacities of flossy precept frameworks and furthermore a trendy primarily based in maximum instances hold close framework. It's miles for the most half of used in Brobdingnagian expertise getting equipped applications. As we have a tendency to in all opportunity am aware, affiliation method of massive information teams the information into thousands of categories addicted to high-quality trends for additional getting equipped. We've got engineered up some other calculation to have an effect on the grouping by using flossy recommendations on this present fact informational index. Forecast of harvest yield is significant because of this on precisely meet marketplace conditions and legitimate company of rural sports coordinated towards enhance in yield. A number of obstacles, as an example, weather, bothers, biophysical and physio morphological highlights advantage their idea whereas determining the yield. It's in reality proper right here that the flossy precept becomes partner in Nursing important issue. This paper explains a shot to create flossy valid frameworks for paddy crop yield expectation.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2024-01-11T15:50:28Z
dc.date.available.none.fl_str_mv 2024-01-11T15:50:28Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Roca Cedeño, J. A., García - López, Y. J., Choque Flores, L. Morales-Ortega, R. Neira-Molina, H. & Combita-Niño, H. (2021). Big data classification using fuzzy logical concepts for paddy yield prediction. Review of International Geographical Education Online, 11(5), 4482-4490. https://doi.org/10.48047/rigeo.11.05.326
dc.identifier.issn.none.fl_str_mv 2146-0353
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/19564
dc.identifier.journal.none.fl_str_mv Review of International Geographical Education Online
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48047/rigeo.11.05.326
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85117203811
identifier_str_mv Roca Cedeño, J. A., García - López, Y. J., Choque Flores, L. Morales-Ortega, R. Neira-Molina, H. & Combita-Niño, H. (2021). Big data classification using fuzzy logical concepts for paddy yield prediction. Review of International Geographical Education Online, 11(5), 4482-4490. https://doi.org/10.48047/rigeo.11.05.326
2146-0353
Review of International Geographical Education Online
0000000121541816
2-s2.0-85117203811
url https://hdl.handle.net/20.500.12724/19564
https://doi.org/10.48047/rigeo.11.05.326
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 2146-0353
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Eskisehir Osmangazi University
dc.publisher.country.none.fl_str_mv TR
publisher.none.fl_str_mv Eskisehir Osmangazi University
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1846611930635042816
score 13.0768795
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).