Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
Descripción del Articulo
The introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This p...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/19064 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/19064 https://doi.org/10.3390/app13179662 |
Nivel de acceso: | acceso abierto |
Materia: | Image processing Fracture mechanics Building inspection Construction industry Artificial intelligence Machine learning Deep learning (Machine learning) Neural networks (Computer science) Computer vision Structural failures Concrete construction https://purl.org/pe-repo/ocde/ford#2.01.00 |
id |
RULI_85864642d32fca28345a3713659c3fb8 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/19064 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision |
title |
Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision |
spellingShingle |
Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision Del Savio, Alexandre Almeida Image processing Fracture mechanics Building inspection Construction industry Artificial intelligence Machine learning Deep learning (Machine learning) Neural networks (Computer science) Computer vision Structural failures Concrete construction https://purl.org/pe-repo/ocde/ford#2.01.00 |
title_short |
Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision |
title_full |
Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision |
title_fullStr |
Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision |
title_full_unstemmed |
Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision |
title_sort |
Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision |
author |
Del Savio, Alexandre Almeida |
author_facet |
Del Savio, Alexandre Almeida Cárdenas Salas, Daniel Enrique Luna Torres, Ana Felícita Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
author_role |
author |
author2 |
Cárdenas Salas, Daniel Enrique Luna Torres, Ana Felícita Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
author2_role |
author author author author |
dc.contributor.other.none.fl_str_mv |
Del Savio, Alexandre Almeida Cárdenas Salas, Daniel Enrique Luna Torres, Ana Felícita Vergara Olivera, Mónica Alejandra |
dc.contributor.student.none.fl_str_mv |
Urday Ibarra, Gianella Tania (Ingeniería de Sistemas) |
dc.contributor.author.fl_str_mv |
Del Savio, Alexandre Almeida Cárdenas Salas, Daniel Enrique Luna Torres, Ana Felícita Vergara Olivera, Mónica Alejandra Urday Ibarra, Gianella Tania |
dc.subject.en_EN.fl_str_mv |
Image processing Fracture mechanics Building inspection Construction industry Artificial intelligence Machine learning Deep learning (Machine learning) Neural networks (Computer science) Computer vision Structural failures Concrete construction |
topic |
Image processing Fracture mechanics Building inspection Construction industry Artificial intelligence Machine learning Deep learning (Machine learning) Neural networks (Computer science) Computer vision Structural failures Concrete construction https://purl.org/pe-repo/ocde/ford#2.01.00 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.01.00 |
description |
The introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This paper proposes a method to determine the criticality of cracks in concrete samples. The proposed method uses a previously trained YOLOv4 neural network to identify concrete cracks. Then, the region of interest, determined by the bounding box resulting from the neural network model classification, is extracted. Finally, the extracted image is converted to negative grayscale to quantify the number of white pixels above a certain threshold, automatically allowing the system to characterize the fracture’s extent and criticality. The classification module reached a veracity between 98.36% and 99.75% when identifying five concrete crack types of failures in 1132 images. A qualitative analysis of the results obtained from the characterization module shows a promising alternative to evaluate the criticality of concrete cracks. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-09T17:16:57Z |
dc.date.available.none.fl_str_mv |
2023-10-09T17:16:57Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Del Savio, A. A., Luna Torres, A., Cárdenas Salas, D., Vergara Olivera, M. A. & Urday Ibarra, G. T. (2023). Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision. Applied Sciences, 13(17). https://doi.org/10.3390/app13179662 |
dc.identifier.issn.none.fl_str_mv |
2076-3417 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/19064 |
dc.identifier.journal.none.fl_str_mv |
Applied Sciences |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/app13179662 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85170364973 |
identifier_str_mv |
Del Savio, A. A., Luna Torres, A., Cárdenas Salas, D., Vergara Olivera, M. A. & Urday Ibarra, G. T. (2023). Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision. Applied Sciences, 13(17). https://doi.org/10.3390/app13179662 2076-3417 Applied Sciences 0000000121541816 2-s2.0-85170364973 |
url |
https://hdl.handle.net/20.500.12724/19064 https://doi.org/10.3390/app13179662 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2076-3417 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.publisher.country.none.fl_str_mv |
CH |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19064/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19064/2/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fc46f5e71650fd7adee84a69b9163c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1845977396003471360 |
spelling |
Del Savio, Alexandre AlmeidaCárdenas Salas, Daniel EnriqueLuna Torres, Ana FelícitaVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella TaniaDel Savio, Alexandre AlmeidaCárdenas Salas, Daniel EnriqueLuna Torres, Ana FelícitaVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella Tania (Ingeniería de Sistemas)2023-10-09T17:16:57Z2023-10-09T17:16:57Z2023Del Savio, A. A., Luna Torres, A., Cárdenas Salas, D., Vergara Olivera, M. A. & Urday Ibarra, G. T. (2023). Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision. Applied Sciences, 13(17). https://doi.org/10.3390/app131796622076-3417https://hdl.handle.net/20.500.12724/19064Applied Sciences0000000121541816https://doi.org/10.3390/app131796622-s2.0-85170364973The introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This paper proposes a method to determine the criticality of cracks in concrete samples. The proposed method uses a previously trained YOLOv4 neural network to identify concrete cracks. Then, the region of interest, determined by the bounding box resulting from the neural network model classification, is extracted. Finally, the extracted image is converted to negative grayscale to quantify the number of white pixels above a certain threshold, automatically allowing the system to characterize the fracture’s extent and criticality. The classification module reached a veracity between 98.36% and 99.75% when identifying five concrete crack types of failures in 1132 images. A qualitative analysis of the results obtained from the characterization module shows a promising alternative to evaluate the criticality of concrete cracks.application/htmlengMultidisciplinary Digital Publishing Institute (MDPI)CHurn:issn: 2076-3417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAImage processingFracture mechanicsBuilding inspectionConstruction industryArtificial intelligenceMachine learningDeep learning (Machine learning)Neural networks (Computer science)Computer visionStructural failuresConcrete constructionhttps://purl.org/pe-repo/ocde/ford#2.01.00Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Visioninfo:eu-repo/semantics/articleArtículo en ScopusImage processingDel Savio, Alexandre Almeida (Ingeniería Civil)Cárdenas Salas, Daniel Enrique (Ingeniería de Sistemas)Luna Torres, Ana Felícita (Ingeniería Civil)Vergara Olivera, Mónica Alejandra (Ingeniería Civil)Del Savio, Alexandre Almeida (Scientific Research Institute (IDIC), Universidad de Lima)Cárdenas Salas, Daniel Enrique (Scientific Research Institute (IDIC), Universidad de Lima)Luna Torres, Ana Felícita (Scientific Research Institute (IDIC), Universidad de Lima)Vergara Olivera, Monica Alejandra (Scientific Research Institute (IDIC), Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19064/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19064/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/19064oai:repositorio.ulima.edu.pe:20.500.12724/190642025-09-03 16:57:33.041Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.02468 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).