Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision

Descripción del Articulo

The introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This p...

Descripción completa

Detalles Bibliográficos
Autores: Del Savio, Alexandre Almeida, Cárdenas Salas, Daniel Enrique, Luna Torres, Ana Felícita, Vergara Olivera, Mónica Alejandra, Urday Ibarra, Gianella Tania
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/19064
Enlace del recurso:https://hdl.handle.net/20.500.12724/19064
https://doi.org/10.3390/app13179662
Nivel de acceso:acceso abierto
Materia:Image processing
Fracture mechanics
Building inspection
Construction industry
Artificial intelligence
Machine learning
Deep learning (Machine learning)
Neural networks (Computer science)
Computer vision
Structural failures
Concrete construction
https://purl.org/pe-repo/ocde/ford#2.01.00
id RULI_85864642d32fca28345a3713659c3fb8
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/19064
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
title Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
spellingShingle Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
Del Savio, Alexandre Almeida
Image processing
Fracture mechanics
Building inspection
Construction industry
Artificial intelligence
Machine learning
Deep learning (Machine learning)
Neural networks (Computer science)
Computer vision
Structural failures
Concrete construction
https://purl.org/pe-repo/ocde/ford#2.01.00
title_short Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
title_full Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
title_fullStr Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
title_full_unstemmed Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
title_sort Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision
author Del Savio, Alexandre Almeida
author_facet Del Savio, Alexandre Almeida
Cárdenas Salas, Daniel Enrique
Luna Torres, Ana Felícita
Vergara Olivera, Mónica Alejandra
Urday Ibarra, Gianella Tania
author_role author
author2 Cárdenas Salas, Daniel Enrique
Luna Torres, Ana Felícita
Vergara Olivera, Mónica Alejandra
Urday Ibarra, Gianella Tania
author2_role author
author
author
author
dc.contributor.other.none.fl_str_mv Del Savio, Alexandre Almeida
Cárdenas Salas, Daniel Enrique
Luna Torres, Ana Felícita
Vergara Olivera, Mónica Alejandra
dc.contributor.student.none.fl_str_mv Urday Ibarra, Gianella Tania (Ingeniería de Sistemas)
dc.contributor.author.fl_str_mv Del Savio, Alexandre Almeida
Cárdenas Salas, Daniel Enrique
Luna Torres, Ana Felícita
Vergara Olivera, Mónica Alejandra
Urday Ibarra, Gianella Tania
dc.subject.en_EN.fl_str_mv Image processing
Fracture mechanics
Building inspection
Construction industry
Artificial intelligence
Machine learning
Deep learning (Machine learning)
Neural networks (Computer science)
Computer vision
Structural failures
Concrete construction
topic Image processing
Fracture mechanics
Building inspection
Construction industry
Artificial intelligence
Machine learning
Deep learning (Machine learning)
Neural networks (Computer science)
Computer vision
Structural failures
Concrete construction
https://purl.org/pe-repo/ocde/ford#2.01.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.01.00
description The introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This paper proposes a method to determine the criticality of cracks in concrete samples. The proposed method uses a previously trained YOLOv4 neural network to identify concrete cracks. Then, the region of interest, determined by the bounding box resulting from the neural network model classification, is extracted. Finally, the extracted image is converted to negative grayscale to quantify the number of white pixels above a certain threshold, automatically allowing the system to characterize the fracture’s extent and criticality. The classification module reached a veracity between 98.36% and 99.75% when identifying five concrete crack types of failures in 1132 images. A qualitative analysis of the results obtained from the characterization module shows a promising alternative to evaluate the criticality of concrete cracks.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-09T17:16:57Z
dc.date.available.none.fl_str_mv 2023-10-09T17:16:57Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Del Savio, A. A., Luna Torres, A., Cárdenas Salas, D., Vergara Olivera, M. A. & Urday Ibarra, G. T. (2023). Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision. Applied Sciences, 13(17). https://doi.org/10.3390/app13179662
dc.identifier.issn.none.fl_str_mv 2076-3417
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/19064
dc.identifier.journal.none.fl_str_mv Applied Sciences
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/app13179662
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85170364973
identifier_str_mv Del Savio, A. A., Luna Torres, A., Cárdenas Salas, D., Vergara Olivera, M. A. & Urday Ibarra, G. T. (2023). Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision. Applied Sciences, 13(17). https://doi.org/10.3390/app13179662
2076-3417
Applied Sciences
0000000121541816
2-s2.0-85170364973
url https://hdl.handle.net/20.500.12724/19064
https://doi.org/10.3390/app13179662
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 2076-3417
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.country.none.fl_str_mv CH
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19064/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19064/2/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1845977396003471360
spelling Del Savio, Alexandre AlmeidaCárdenas Salas, Daniel EnriqueLuna Torres, Ana FelícitaVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella TaniaDel Savio, Alexandre AlmeidaCárdenas Salas, Daniel EnriqueLuna Torres, Ana FelícitaVergara Olivera, Mónica AlejandraUrday Ibarra, Gianella Tania (Ingeniería de Sistemas)2023-10-09T17:16:57Z2023-10-09T17:16:57Z2023Del Savio, A. A., Luna Torres, A., Cárdenas Salas, D., Vergara Olivera, M. A. & Urday Ibarra, G. T. (2023). Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision. Applied Sciences, 13(17). https://doi.org/10.3390/app131796622076-3417https://hdl.handle.net/20.500.12724/19064Applied Sciences0000000121541816https://doi.org/10.3390/app131796622-s2.0-85170364973The introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This paper proposes a method to determine the criticality of cracks in concrete samples. The proposed method uses a previously trained YOLOv4 neural network to identify concrete cracks. Then, the region of interest, determined by the bounding box resulting from the neural network model classification, is extracted. Finally, the extracted image is converted to negative grayscale to quantify the number of white pixels above a certain threshold, automatically allowing the system to characterize the fracture’s extent and criticality. The classification module reached a veracity between 98.36% and 99.75% when identifying five concrete crack types of failures in 1132 images. A qualitative analysis of the results obtained from the characterization module shows a promising alternative to evaluate the criticality of concrete cracks.application/htmlengMultidisciplinary Digital Publishing Institute (MDPI)CHurn:issn: 2076-3417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAImage processingFracture mechanicsBuilding inspectionConstruction industryArtificial intelligenceMachine learningDeep learning (Machine learning)Neural networks (Computer science)Computer visionStructural failuresConcrete constructionhttps://purl.org/pe-repo/ocde/ford#2.01.00Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Visioninfo:eu-repo/semantics/articleArtículo en ScopusImage processingDel Savio, Alexandre Almeida (Ingeniería Civil)Cárdenas Salas, Daniel Enrique (Ingeniería de Sistemas)Luna Torres, Ana Felícita (Ingeniería Civil)Vergara Olivera, Mónica Alejandra (Ingeniería Civil)Del Savio, Alexandre Almeida (Scientific Research Institute (IDIC), Universidad de Lima)Cárdenas Salas, Daniel Enrique (Scientific Research Institute (IDIC), Universidad de Lima)Luna Torres, Ana Felícita (Scientific Research Institute (IDIC), Universidad de Lima)Vergara Olivera, Monica Alejandra (Scientific Research Institute (IDIC), Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19064/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19064/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/19064oai:repositorio.ulima.edu.pe:20.500.12724/190642025-09-03 16:57:33.041Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.02468
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).