Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.

Descripción del Articulo

This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior o...

Descripción completa

Detalles Bibliográficos
Autores: Taquía Gutiérrez, José Antonio, García López, Yván Jesús
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/19527
Enlace del recurso:https://hdl.handle.net/20.500.12724/19527
https://doi.org/10.25103/jestr.165.03
Nivel de acceso:acceso abierto
Materia:Genetic algorithms
Physical distribution of goods
Food
Distribución comercial
Algoritmos genéticos
Logística empresarial
Alimentos
Lima (Perú)
https://purl.org/pe-repo/ocde/ford#2.02.03
id RULI_5690b5d07752b2c010a7c3e7e4b9b92e
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/19527
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
spelling Taquía Gutiérrez, José AntonioGarcía López, Yván JesúsTaquía Gutiérrez, José AntonioGarcía López, Yván Jesús2023-12-13T17:08:33Z2023-12-13T17:08:33Z2023Taquía Gutiérrez, J. A., & García López, Y. (2023). Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. Journal of Engineering Science and Technology Review, 16(5). 19-24. https://doi.org/10.25103/jestr.165.031791-2377https://hdl.handle.net/20.500.12724/19527Journal of Engineering Science and Technology Review0000000121541816https://doi.org/10.25103/jestr.165.032-s2.0-85177191660This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable.application/htmlengInternational Hellenic University, School of ScienceGRurn:issn: 1791-2377info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAGenetic algorithmsPhysical distribution of goodsFoodDistribución comercialAlgoritmos genéticosLogística empresarialAlimentosLima (Perú)https://purl.org/pe-repo/ocde/ford#2.02.03Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.info:eu-repo/semantics/articleArtículo en ScopusTaquía Gutiérrez, José Antonio (Ingeniería Industrial)García López, Yván Jesús (Ingeniería Industrial)Taquía Gutiérrez, José Antonio (Universidad de Lima, Instituto de Investigación Científica)García López, Yván Jesús (Universidad de Lima)920.500.12724/19527oai:repositorio.ulima.edu.pe:20.500.12724/195272025-03-06 19:37:44.262Repositorio Universidad de Limarepositorio@ulima.edu.pe
dc.title.en_EN.fl_str_mv Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
title Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
spellingShingle Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
Taquía Gutiérrez, José Antonio
Genetic algorithms
Physical distribution of goods
Food
Distribución comercial
Algoritmos genéticos
Logística empresarial
Alimentos
Lima (Perú)
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
title_full Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
title_fullStr Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
title_full_unstemmed Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
title_sort Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
author Taquía Gutiérrez, José Antonio
author_facet Taquía Gutiérrez, José Antonio
García López, Yván Jesús
author_role author
author2 García López, Yván Jesús
author2_role author
dc.contributor.other.none.fl_str_mv Taquía Gutiérrez, José Antonio
García López, Yván Jesús
dc.contributor.author.fl_str_mv Taquía Gutiérrez, José Antonio
García López, Yván Jesús
dc.subject.en_EN.fl_str_mv Genetic algorithms
Physical distribution of goods
Food
topic Genetic algorithms
Physical distribution of goods
Food
Distribución comercial
Algoritmos genéticos
Logística empresarial
Alimentos
Lima (Perú)
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv Distribución comercial
Algoritmos genéticos
Logística empresarial
Alimentos
Lima (Perú)
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-13T17:08:33Z
dc.date.available.none.fl_str_mv 2023-12-13T17:08:33Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Taquía Gutiérrez, J. A., & García López, Y. (2023). Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. Journal of Engineering Science and Technology Review, 16(5). 19-24. https://doi.org/10.25103/jestr.165.03
dc.identifier.issn.none.fl_str_mv 1791-2377
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/19527
dc.identifier.journal.none.fl_str_mv Journal of Engineering Science and Technology Review
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.25103/jestr.165.03
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85177191660
identifier_str_mv Taquía Gutiérrez, J. A., & García López, Y. (2023). Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. Journal of Engineering Science and Technology Review, 16(5). 19-24. https://doi.org/10.25103/jestr.165.03
1791-2377
Journal of Engineering Science and Technology Review
0000000121541816
2-s2.0-85177191660
url https://hdl.handle.net/20.500.12724/19527
https://doi.org/10.25103/jestr.165.03
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 1791-2377
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv International Hellenic University, School of Science
dc.publisher.country.none.fl_str_mv GR
publisher.none.fl_str_mv International Hellenic University, School of Science
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1845977398745497600
score 13.026274
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).