Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.
Descripción del Articulo
This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior o...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/19527 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/19527 https://doi.org/10.25103/jestr.165.03 |
Nivel de acceso: | acceso abierto |
Materia: | Genetic algorithms Physical distribution of goods Food Distribución comercial Algoritmos genéticos Logística empresarial Alimentos Lima (Perú) https://purl.org/pe-repo/ocde/ford#2.02.03 |
id |
RULI_5690b5d07752b2c010a7c3e7e4b9b92e |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/19527 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
spelling |
Taquía Gutiérrez, José AntonioGarcía López, Yván JesúsTaquía Gutiérrez, José AntonioGarcía López, Yván Jesús2023-12-13T17:08:33Z2023-12-13T17:08:33Z2023Taquía Gutiérrez, J. A., & García López, Y. (2023). Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. Journal of Engineering Science and Technology Review, 16(5). 19-24. https://doi.org/10.25103/jestr.165.031791-2377https://hdl.handle.net/20.500.12724/19527Journal of Engineering Science and Technology Review0000000121541816https://doi.org/10.25103/jestr.165.032-s2.0-85177191660This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable.application/htmlengInternational Hellenic University, School of ScienceGRurn:issn: 1791-2377info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAGenetic algorithmsPhysical distribution of goodsFoodDistribución comercialAlgoritmos genéticosLogística empresarialAlimentosLima (Perú)https://purl.org/pe-repo/ocde/ford#2.02.03Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.info:eu-repo/semantics/articleArtículo en ScopusTaquía Gutiérrez, José Antonio (Ingeniería Industrial)García López, Yván Jesús (Ingeniería Industrial)Taquía Gutiérrez, José Antonio (Universidad de Lima, Instituto de Investigación Científica)García López, Yván Jesús (Universidad de Lima)920.500.12724/19527oai:repositorio.ulima.edu.pe:20.500.12724/195272025-03-06 19:37:44.262Repositorio Universidad de Limarepositorio@ulima.edu.pe |
dc.title.en_EN.fl_str_mv |
Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. |
title |
Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. |
spellingShingle |
Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. Taquía Gutiérrez, José Antonio Genetic algorithms Physical distribution of goods Food Distribución comercial Algoritmos genéticos Logística empresarial Alimentos Lima (Perú) https://purl.org/pe-repo/ocde/ford#2.02.03 |
title_short |
Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. |
title_full |
Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. |
title_fullStr |
Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. |
title_full_unstemmed |
Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. |
title_sort |
Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. |
author |
Taquía Gutiérrez, José Antonio |
author_facet |
Taquía Gutiérrez, José Antonio García López, Yván Jesús |
author_role |
author |
author2 |
García López, Yván Jesús |
author2_role |
author |
dc.contributor.other.none.fl_str_mv |
Taquía Gutiérrez, José Antonio García López, Yván Jesús |
dc.contributor.author.fl_str_mv |
Taquía Gutiérrez, José Antonio García López, Yván Jesús |
dc.subject.en_EN.fl_str_mv |
Genetic algorithms Physical distribution of goods Food |
topic |
Genetic algorithms Physical distribution of goods Food Distribución comercial Algoritmos genéticos Logística empresarial Alimentos Lima (Perú) https://purl.org/pe-repo/ocde/ford#2.02.03 |
dc.subject.es_PE.fl_str_mv |
Distribución comercial Algoritmos genéticos Logística empresarial Alimentos Lima (Perú) |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
description |
This research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-13T17:08:33Z |
dc.date.available.none.fl_str_mv |
2023-12-13T17:08:33Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Taquía Gutiérrez, J. A., & García López, Y. (2023). Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. Journal of Engineering Science and Technology Review, 16(5). 19-24. https://doi.org/10.25103/jestr.165.03 |
dc.identifier.issn.none.fl_str_mv |
1791-2377 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/19527 |
dc.identifier.journal.none.fl_str_mv |
Journal of Engineering Science and Technology Review |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.25103/jestr.165.03 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85177191660 |
identifier_str_mv |
Taquía Gutiérrez, J. A., & García López, Y. (2023). Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. Journal of Engineering Science and Technology Review, 16(5). 19-24. https://doi.org/10.25103/jestr.165.03 1791-2377 Journal of Engineering Science and Technology Review 0000000121541816 2-s2.0-85177191660 |
url |
https://hdl.handle.net/20.500.12724/19527 https://doi.org/10.25103/jestr.165.03 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn: 1791-2377 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
International Hellenic University, School of Science |
dc.publisher.country.none.fl_str_mv |
GR |
publisher.none.fl_str_mv |
International Hellenic University, School of Science |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1845977398745497600 |
score |
13.026274 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).