Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review
Descripción del Articulo
The article applies genetic algorithms as a tool of artificial intelligence that provides optimal solutions to the problem of vehicle routing in the distribution chain by transport companies. The main problem in the food sector is transporting perishable goods with low life expectancy. The methodolo...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/20263 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/20263 |
Nivel de acceso: | acceso abierto |
Materia: | Transporte de alimentos Algoritmos genéticos Asignación de vías Estimación de tráfico Revisión bibliográfica Transportation food Genetic algorithms Traffic assignment Traffic estimation Bibliographical revision https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
RULI_552bb6c12cc4cd5e47416b33ccab54a5 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/20263 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review |
title |
Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review |
spellingShingle |
Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review Ayre Rosales, Dylan Anndrei Transporte de alimentos Algoritmos genéticos Asignación de vías Estimación de tráfico Revisión bibliográfica Transportation food Genetic algorithms Traffic assignment Traffic estimation Bibliographical revision https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review |
title_full |
Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review |
title_fullStr |
Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review |
title_full_unstemmed |
Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review |
title_sort |
Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review |
author |
Ayre Rosales, Dylan Anndrei |
author_facet |
Ayre Rosales, Dylan Anndrei |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Flores Pérez, Alberto Enrique |
dc.contributor.author.fl_str_mv |
Ayre Rosales, Dylan Anndrei |
dc.subject.es_PE.fl_str_mv |
Transporte de alimentos Algoritmos genéticos Asignación de vías Estimación de tráfico Revisión bibliográfica |
topic |
Transporte de alimentos Algoritmos genéticos Asignación de vías Estimación de tráfico Revisión bibliográfica Transportation food Genetic algorithms Traffic assignment Traffic estimation Bibliographical revision https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.en_EN.fl_str_mv |
Transportation food Genetic algorithms Traffic assignment Traffic estimation Bibliographical revision |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
The article applies genetic algorithms as a tool of artificial intelligence that provides optimal solutions to the problem of vehicle routing in the distribution chain by transport companies. The main problem in the food sector is transporting perishable goods with low life expectancy. The methodology used for the present work was a systematic literature review focused on applying genetic algorithms in transport companies. To achieve this goal, a massive search was made in Scopus, Web of Science, and Proquest databases. A total of 60 articles were compiled for this document. For the study of the extracted articles, they were categorized into three factors: total costs in distribution, profitability, and delivery times. For the findings section, the use of Vosviewer software was used. The use of this software allowed us to demonstrate that genetic algorithms would have a positive influence on each of the factors mentioned |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-22T17:14:51Z |
dc.date.available.none.fl_str_mv |
2024-04-22T17:14:51Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.other.none.fl_str_mv |
Tesis |
format |
bachelorThesis |
dc.identifier.citation.es_PE.fl_str_mv |
Ayre Rosales, D. A. (2024). Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20263 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/20263 |
dc.identifier.isni.none.fl_str_mv |
121541816 |
identifier_str_mv |
Ayre Rosales, D. A. (2024). Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20263 121541816 |
url |
https://hdl.handle.net/20.500.12724/20263 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/1/T018_71403028_T%20.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/2/FA_71403028_SR%20.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/3/TURNITIN_AYRE%20ROSALES%20DYLAN%20ANNDREI_20170131%20.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/4/T018_71403028_T%20.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/6/FA_71403028_SR%20.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/8/TURNITIN_AYRE%20ROSALES%20DYLAN%20ANNDREI_20170131%20.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/5/T018_71403028_T%20.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/7/FA_71403028_SR%20.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/9/TURNITIN_AYRE%20ROSALES%20DYLAN%20ANNDREI_20170131%20.pdf.jpg |
bitstream.checksum.fl_str_mv |
269d577ac50f25516d3b3a4fc6c1ef09 32dfe1ee227ca8f34cde6738c2181e9b 965805dd41ab8a6c19bf53467d8d8ef4 3ea7ad926bb9517fd8a8a3fa1f9e8ffb 758922ec7de1e1558edde805b8b96ac3 74de9da9d1602a81c238f8051c3b378c c483d17249837b036e474c0cc61c4d60 6e397a1244e87fc6e60be672e58d84cc 98f78da9f4e58d9765eef0b3a80bd461 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1845977474787180544 |
spelling |
Flores Pérez, Alberto EnriqueAyre Rosales, Dylan Anndrei2024-04-22T17:14:51Z2024-04-22T17:14:51Z2024Ayre Rosales, D. A. (2024). Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature review [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/20263https://hdl.handle.net/20.500.12724/20263121541816The article applies genetic algorithms as a tool of artificial intelligence that provides optimal solutions to the problem of vehicle routing in the distribution chain by transport companies. The main problem in the food sector is transporting perishable goods with low life expectancy. The methodology used for the present work was a systematic literature review focused on applying genetic algorithms in transport companies. To achieve this goal, a massive search was made in Scopus, Web of Science, and Proquest databases. A total of 60 articles were compiled for this document. For the study of the extracted articles, they were categorized into three factors: total costs in distribution, profitability, and delivery times. For the findings section, the use of Vosviewer software was used. The use of this software allowed us to demonstrate that genetic algorithms would have a positive influence on each of the factors mentionedEl artículo aplica algoritmos genéticos como herramienta de inteligencia artificial que proporciona soluciones óptimas al problema del ruteo de vehículos en la cadena de distribución por parte de las empresas de transporte. El principal problema del sector alimentario es el transporte de productos perecederos con una baja esperanza de vida. La metodología utilizada para el presente trabajo fue una revisión sistemática de la literatura centrada en la aplicación de algoritmos genéticos en empresas de transporte. Para lograr este objetivo se realizó una búsqueda masiva en las bases de datos Scopus, Web of Science y Proquest. Para este documento se recopilaron un total de 60 artículos. Para el estudio de los artículos extraídos, se categorizaron en tres factores: costos totales en distribución, rentabilidad y tiempos de entrega. Para la sección de hallazgos se utilizó el software Vosviewer. El uso de este software permitió demostrar que los algoritmos genéticos tendrían una influencia positiva en cada uno de los factores mencionados.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMATransporte de alimentosAlgoritmos genéticosAsignación de víasEstimación de tráficoRevisión bibliográficaTransportation foodGenetic algorithmsTraffic assignmentTraffic estimationBibliographical revisionhttps://purl.org/pe-repo/ocde/ford#2.11.04Application of genetic algorithms to optimize distribution in food transport companies: a systematic literature reviewinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-0813-0662927881672202671403028https://purl.org/pe-repo/renati/level#tituloProfesionalQuiroz Flores, Juan CarlosTaquía Gutiérrez, José AntonioFlores Pérez, Alberto Enriquehttps://purl.org/pe-repo/renati/type#tesis015ORIGINALT018_71403028_T .pdfT018_71403028_T .pdfTesisapplication/pdf571471https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/1/T018_71403028_T%20.pdf269d577ac50f25516d3b3a4fc6c1ef09MD51FA_71403028_SR .pdfFA_71403028_SR .pdfAutorizaciónapplication/pdf214500https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/2/FA_71403028_SR%20.pdf32dfe1ee227ca8f34cde6738c2181e9bMD52TURNITIN_AYRE ROSALES DYLAN ANNDREI_20170131 .pdfTURNITIN_AYRE ROSALES DYLAN ANNDREI_20170131 .pdfReporte de similitudapplication/pdf3235558https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/3/TURNITIN_AYRE%20ROSALES%20DYLAN%20ANNDREI_20170131%20.pdf965805dd41ab8a6c19bf53467d8d8ef4MD53TEXTT018_71403028_T .pdf.txtT018_71403028_T .pdf.txtExtracted texttext/plain49823https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/4/T018_71403028_T%20.pdf.txt3ea7ad926bb9517fd8a8a3fa1f9e8ffbMD54FA_71403028_SR .pdf.txtFA_71403028_SR .pdf.txtExtracted texttext/plain2537https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/6/FA_71403028_SR%20.pdf.txt758922ec7de1e1558edde805b8b96ac3MD56TURNITIN_AYRE ROSALES DYLAN ANNDREI_20170131 .pdf.txtTURNITIN_AYRE ROSALES DYLAN ANNDREI_20170131 .pdf.txtExtracted texttext/plain1799https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/8/TURNITIN_AYRE%20ROSALES%20DYLAN%20ANNDREI_20170131%20.pdf.txt74de9da9d1602a81c238f8051c3b378cMD58THUMBNAILT018_71403028_T .pdf.jpgT018_71403028_T .pdf.jpgGenerated Thumbnailimage/jpeg10305https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/5/T018_71403028_T%20.pdf.jpgc483d17249837b036e474c0cc61c4d60MD55FA_71403028_SR .pdf.jpgFA_71403028_SR .pdf.jpgGenerated Thumbnailimage/jpeg15833https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/7/FA_71403028_SR%20.pdf.jpg6e397a1244e87fc6e60be672e58d84ccMD57TURNITIN_AYRE ROSALES DYLAN ANNDREI_20170131 .pdf.jpgTURNITIN_AYRE ROSALES DYLAN ANNDREI_20170131 .pdf.jpgGenerated Thumbnailimage/jpeg6769https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20263/9/TURNITIN_AYRE%20ROSALES%20DYLAN%20ANNDREI_20170131%20.pdf.jpg98f78da9f4e58d9765eef0b3a80bd461MD5920.500.12724/20263oai:repositorio.ulima.edu.pe:20.500.12724/202632024-12-06 17:31:38.713Repositorio Universidad de Limarepositorio@ulima.edu.pe |
score |
12.989271 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).