Arabidopsis thaliana computationally-generated next-state gene interaction models
Descripción del Articulo
The construction of gene interaction models must be a fully collaborative and intentional effort. All aspects of the research, such as growing the plants, extracting the measurements, refining the measured data, developing the statistical framework, and forming and applying the algorithmic technique...
Autores: | , , , , , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2019 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/8739 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/8739 |
Nivel de acceso: | acceso abierto |
Materia: | Redes neuronales artificiales Arabidopsis thaliana Artificial neural networks Genetic transcription Transcripción genética Ingeniería de sistemas / Diseño y métodos http://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
RULI_48841bcb1b6105dfdabda84fab88b8dd |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/8739 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en.fl_str_mv |
Arabidopsis thaliana computationally-generated next-state gene interaction models |
title |
Arabidopsis thaliana computationally-generated next-state gene interaction models |
spellingShingle |
Arabidopsis thaliana computationally-generated next-state gene interaction models LaPointe, Bree Redes neuronales artificiales Arabidopsis thaliana Artificial neural networks Genetic transcription Transcripción genética Ingeniería de sistemas / Diseño y métodos http://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Arabidopsis thaliana computationally-generated next-state gene interaction models |
title_full |
Arabidopsis thaliana computationally-generated next-state gene interaction models |
title_fullStr |
Arabidopsis thaliana computationally-generated next-state gene interaction models |
title_full_unstemmed |
Arabidopsis thaliana computationally-generated next-state gene interaction models |
title_sort |
Arabidopsis thaliana computationally-generated next-state gene interaction models |
author |
LaPointe, Bree |
author_facet |
LaPointe, Bree John, David Norris, James Harkey, Alexandria Muhlemann, Joëlle Muday, Gloria |
author_role |
author |
author2 |
John, David Norris, James Harkey, Alexandria Muhlemann, Joëlle Muday, Gloria |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
LaPointe, Bree John, David Norris, James Harkey, Alexandria Muhlemann, Joëlle Muday, Gloria |
dc.subject.es.fl_str_mv |
Redes neuronales artificiales |
topic |
Redes neuronales artificiales Arabidopsis thaliana Artificial neural networks Genetic transcription Transcripción genética Ingeniería de sistemas / Diseño y métodos http://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.en_EN.fl_str_mv |
Arabidopsis thaliana Artificial neural networks Genetic transcription |
dc.subject.es_PE.fl_str_mv |
Transcripción genética |
dc.subject.classification.es.fl_str_mv |
Ingeniería de sistemas / Diseño y métodos |
dc.subject.ocde.es_PE.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
The construction of gene interaction models must be a fully collaborative and intentional effort. All aspects of the research, such as growing the plants, extracting the measurements, refining the measured data, developing the statistical framework, and forming and applying the algorithmic techniques, must lend themselves to repeatable and sound practices. This paper holistically focuses on the process of producing gene interaction models based on transcript abundance data from Arabidopsis thaliana after stimulation by a plant hormone. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-07-09T21:33:15Z |
dc.date.available.none.fl_str_mv |
2019-07-09T21:33:15Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.other.es_PE.fl_str_mv |
Artículo de conferencia |
format |
conferenceObject |
dc.identifier.citation.es.fl_str_mv |
LaPointe, B., John, D., Norris, J., Harkey, A. F., Muhlemann, J. K. & Muday, G. K. (2019). Arabidopsis thaliana computationally-generated next-state gene interaction models. En Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 17-26). Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/8739 |
identifier_str_mv |
LaPointe, B., John, D., Norris, J., Harkey, A. F., Muhlemann, J. K. & Muday, G. K. (2019). Arabidopsis thaliana computationally-generated next-state gene interaction models. En Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 17-26). Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial. |
url |
https://hdl.handle.net/20.500.12724/8739 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad de Lima, Fondo Editorial |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Universidad de Lima Repositorio Institucional - Ulima |
dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8739/4/confermagistral_01-Bree.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8739/3/confermagistral_01-Bree.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8739/2/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8739/1/confermagistral_01-Bree.pdf |
bitstream.checksum.fl_str_mv |
44569348d0006705ccb48edc23f5556f cbc0b3677787238ef15136b05c006595 8a4605be74aa9ea9d79846c1fba20a33 2d89e32ad75e7cbdfb3672f35890c2fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1822513707654053888 |
spelling |
LaPointe, BreeJohn, DavidNorris, JamesHarkey, AlexandriaMuhlemann, JoëlleMuday, Gloria2019-07-09T21:33:15Z2019-07-09T21:33:15Z2019LaPointe, B., John, D., Norris, J., Harkey, A. F., Muhlemann, J. K. & Muday, G. K. (2019). Arabidopsis thaliana computationally-generated next-state gene interaction models. En Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 17-26). Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial.https://hdl.handle.net/20.500.12724/8739The construction of gene interaction models must be a fully collaborative and intentional effort. All aspects of the research, such as growing the plants, extracting the measurements, refining the measured data, developing the statistical framework, and forming and applying the algorithmic techniques, must lend themselves to repeatable and sound practices. This paper holistically focuses on the process of producing gene interaction models based on transcript abundance data from Arabidopsis thaliana after stimulation by a plant hormone.Revisado por paresapplication/pdfengUniversidad de Lima, Fondo EditorialPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Universidad de LimaRepositorio Institucional - Ulimareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMARedes neuronales artificialesArabidopsis thalianaArtificial neural networksGenetic transcriptionTranscripción genéticaIngeniería de sistemas / Diseño y métodoshttp://purl.org/pe-repo/ocde/ford#2.02.04Arabidopsis thaliana computationally-generated next-state gene interaction modelsinfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaTHUMBNAILconfermagistral_01-Bree.pdf.jpgconfermagistral_01-Bree.pdf.jpgGenerated Thumbnailimage/jpeg13310https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8739/4/confermagistral_01-Bree.pdf.jpg44569348d0006705ccb48edc23f5556fMD54TEXTconfermagistral_01-Bree.pdf.txtconfermagistral_01-Bree.pdf.txtExtracted texttext/plain24494https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8739/3/confermagistral_01-Bree.pdf.txtcbc0b3677787238ef15136b05c006595MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8739/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALconfermagistral_01-Bree.pdfconfermagistral_01-Bree.pdfapplication/pdf1094758https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8739/1/confermagistral_01-Bree.pdf2d89e32ad75e7cbdfb3672f35890c2feMD5120.500.12724/8739oai:repositorio.ulima.edu.pe:20.500.12724/87392021-08-02 23:39:15.484Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.982926 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).