Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
Descripción del Articulo
In Peru, the food and beverage services sector shows constant annual growth and a demand experiencing significant monthly variations. However, SMEs in this sector face recurring problems due to their low levels of preparedness, making demand fluctuations a latent threat. Food and beverage service SM...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/23244 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/23244 https://doi.org/10.14445/22315381/IJETT-V73I3P140 |
| Nivel de acceso: | acceso abierto |
| Materia: | Pendiente |
| id |
RULI_403ea0eba9094ed67ea4418e20bc4126 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/23244 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| spelling |
Loyola Ferrer, GabrielaVeldi Díaz, Wiebke FernandaQuiroz Flores, Juan CarlosQuiroz Flores, Juan CarlosLoyola Ferrer, Gabriela (Ingeniería Industrial)Veldi Díaz, Wiebke Fernanda (Ingeniería Industrial)2025-09-09T21:26:42Z2025-09-09T21:26:42Z20252349-0918https://hdl.handle.net/20.500.12724/23244International Journal of Engineering trends and Technology121541816https://doi.org/10.14445/22315381/IJETT-V73I3P1402-s2.0-105001247293In Peru, the food and beverage services sector shows constant annual growth and a demand experiencing significant monthly variations. However, SMEs in this sector face recurring problems due to their low levels of preparedness, making demand fluctuations a latent threat. Food and beverage service SMEs suffer from inadequate inventory management, inaccurate supply planning and a lack of process optimization, which leads to a low level of On Time in Full (OTIF) deliveries. This is detrimental to an SME, as customer satisfaction is crucial in this sector. Due to this, the present study proposes an innovative Lean Management model that integrates 5S tools and Machine Learning to increase OTIF in a Peruvian beverage service SME. The research focuses on the Milk Tea and Smoothie product lines, which exhibited stockouts and high preparation and stock review times through analysis and diagnosis. The proposed model results in a reduction of 75.98% in the total cycle time of an order. Additionally, the implementation of Machine Learning helped reduce stockouts by providing a more accurate supply forecast, improving forecast error by 19.72% and 38.71% for tapioca and milk, respectively. These indicators led to a 51.42% increase in OTIF. Thus, this management model effectively innovates by adapting tools often used for manufacturing and production to the services sector, thereby achieving outstanding results in both efficiency and customer satisfaction.application/htmlengSeventh Sense Research GroupMYurn:issn: 2349-0918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/PendientePendienteEnhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodologyinfo:eu-repo/semantics/articleArtículo (Scopus)reponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMA20.500.12724/23244oai:repositorio.ulima.edu.pe:20.500.12724/232442025-11-08 09:06:38.994Repositorio Universidad de Limarepositorio@ulima.edu.pe |
| dc.title.en_EN.fl_str_mv |
Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology |
| title |
Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology |
| spellingShingle |
Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology Loyola Ferrer, Gabriela Pendiente Pendiente |
| title_short |
Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology |
| title_full |
Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology |
| title_fullStr |
Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology |
| title_full_unstemmed |
Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology |
| title_sort |
Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology |
| author |
Loyola Ferrer, Gabriela |
| author_facet |
Loyola Ferrer, Gabriela Veldi Díaz, Wiebke Fernanda Quiroz Flores, Juan Carlos |
| author_role |
author |
| author2 |
Veldi Díaz, Wiebke Fernanda Quiroz Flores, Juan Carlos |
| author2_role |
author author |
| dc.contributor.other.none.fl_str_mv |
Quiroz Flores, Juan Carlos |
| dc.contributor.student.none.fl_str_mv |
Loyola Ferrer, Gabriela (Ingeniería Industrial) Veldi Díaz, Wiebke Fernanda (Ingeniería Industrial) |
| dc.contributor.author.fl_str_mv |
Loyola Ferrer, Gabriela Veldi Díaz, Wiebke Fernanda Quiroz Flores, Juan Carlos |
| dc.subject.none.fl_str_mv |
Pendiente |
| topic |
Pendiente Pendiente |
| dc.subject.ocde.none.fl_str_mv |
Pendiente |
| description |
In Peru, the food and beverage services sector shows constant annual growth and a demand experiencing significant monthly variations. However, SMEs in this sector face recurring problems due to their low levels of preparedness, making demand fluctuations a latent threat. Food and beverage service SMEs suffer from inadequate inventory management, inaccurate supply planning and a lack of process optimization, which leads to a low level of On Time in Full (OTIF) deliveries. This is detrimental to an SME, as customer satisfaction is crucial in this sector. Due to this, the present study proposes an innovative Lean Management model that integrates 5S tools and Machine Learning to increase OTIF in a Peruvian beverage service SME. The research focuses on the Milk Tea and Smoothie product lines, which exhibited stockouts and high preparation and stock review times through analysis and diagnosis. The proposed model results in a reduction of 75.98% in the total cycle time of an order. Additionally, the implementation of Machine Learning helped reduce stockouts by providing a more accurate supply forecast, improving forecast error by 19.72% and 38.71% for tapioca and milk, respectively. These indicators led to a 51.42% increase in OTIF. Thus, this management model effectively innovates by adapting tools often used for manufacturing and production to the services sector, thereby achieving outstanding results in both efficiency and customer satisfaction. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-09-09T21:26:42Z |
| dc.date.available.none.fl_str_mv |
2025-09-09T21:26:42Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo (Scopus) |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
2349-0918 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/23244 |
| dc.identifier.journal.en_EN.fl_str_mv |
International Journal of Engineering trends and Technology |
| dc.identifier.isni.none.fl_str_mv |
121541816 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14445/22315381/IJETT-V73I3P140 |
| dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-105001247293 |
| identifier_str_mv |
2349-0918 International Journal of Engineering trends and Technology 121541816 2-s2.0-105001247293 |
| url |
https://hdl.handle.net/20.500.12724/23244 https://doi.org/10.14445/22315381/IJETT-V73I3P140 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2349-0918 |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/html |
| dc.publisher.en_EN.fl_str_mv |
Seventh Sense Research Group |
| dc.publisher.country.none.fl_str_mv |
MY |
| dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1849149263616933888 |
| score |
13.881323 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).