Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology

Descripción del Articulo

In Peru, the food and beverage services sector shows constant annual growth and a demand experiencing significant monthly variations. However, SMEs in this sector face recurring problems due to their low levels of preparedness, making demand fluctuations a latent threat. Food and beverage service SM...

Descripción completa

Detalles Bibliográficos
Autores: Loyola Ferrer, Gabriela, Veldi Díaz, Wiebke Fernanda, Quiroz Flores, Juan Carlos
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/23244
Enlace del recurso:https://hdl.handle.net/20.500.12724/23244
https://doi.org/10.14445/22315381/IJETT-V73I3P140
Nivel de acceso:acceso abierto
Materia:Pendiente
id RULI_403ea0eba9094ed67ea4418e20bc4126
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/23244
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
spelling Loyola Ferrer, GabrielaVeldi Díaz, Wiebke FernandaQuiroz Flores, Juan CarlosQuiroz Flores, Juan CarlosLoyola Ferrer, Gabriela (Ingeniería Industrial)Veldi Díaz, Wiebke Fernanda (Ingeniería Industrial)2025-09-09T21:26:42Z2025-09-09T21:26:42Z20252349-0918https://hdl.handle.net/20.500.12724/23244International Journal of Engineering trends and Technology121541816https://doi.org/10.14445/22315381/IJETT-V73I3P1402-s2.0-105001247293In Peru, the food and beverage services sector shows constant annual growth and a demand experiencing significant monthly variations. However, SMEs in this sector face recurring problems due to their low levels of preparedness, making demand fluctuations a latent threat. Food and beverage service SMEs suffer from inadequate inventory management, inaccurate supply planning and a lack of process optimization, which leads to a low level of On Time in Full (OTIF) deliveries. This is detrimental to an SME, as customer satisfaction is crucial in this sector. Due to this, the present study proposes an innovative Lean Management model that integrates 5S tools and Machine Learning to increase OTIF in a Peruvian beverage service SME. The research focuses on the Milk Tea and Smoothie product lines, which exhibited stockouts and high preparation and stock review times through analysis and diagnosis. The proposed model results in a reduction of 75.98% in the total cycle time of an order. Additionally, the implementation of Machine Learning helped reduce stockouts by providing a more accurate supply forecast, improving forecast error by 19.72% and 38.71% for tapioca and milk, respectively. These indicators led to a 51.42% increase in OTIF. Thus, this management model effectively innovates by adapting tools often used for manufacturing and production to the services sector, thereby achieving outstanding results in both efficiency and customer satisfaction.application/htmlengSeventh Sense Research GroupMYurn:issn: 2349-0918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/PendientePendienteEnhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodologyinfo:eu-repo/semantics/articleArtículo (Scopus)reponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMA20.500.12724/23244oai:repositorio.ulima.edu.pe:20.500.12724/232442025-11-08 09:06:38.994Repositorio Universidad de Limarepositorio@ulima.edu.pe
dc.title.en_EN.fl_str_mv Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
title Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
spellingShingle Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
Loyola Ferrer, Gabriela
Pendiente
Pendiente
title_short Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
title_full Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
title_fullStr Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
title_full_unstemmed Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
title_sort Enhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodology
author Loyola Ferrer, Gabriela
author_facet Loyola Ferrer, Gabriela
Veldi Díaz, Wiebke Fernanda
Quiroz Flores, Juan Carlos
author_role author
author2 Veldi Díaz, Wiebke Fernanda
Quiroz Flores, Juan Carlos
author2_role author
author
dc.contributor.other.none.fl_str_mv Quiroz Flores, Juan Carlos
dc.contributor.student.none.fl_str_mv Loyola Ferrer, Gabriela (Ingeniería Industrial)
Veldi Díaz, Wiebke Fernanda (Ingeniería Industrial)
dc.contributor.author.fl_str_mv Loyola Ferrer, Gabriela
Veldi Díaz, Wiebke Fernanda
Quiroz Flores, Juan Carlos
dc.subject.none.fl_str_mv Pendiente
topic Pendiente
Pendiente
dc.subject.ocde.none.fl_str_mv Pendiente
description In Peru, the food and beverage services sector shows constant annual growth and a demand experiencing significant monthly variations. However, SMEs in this sector face recurring problems due to their low levels of preparedness, making demand fluctuations a latent threat. Food and beverage service SMEs suffer from inadequate inventory management, inaccurate supply planning and a lack of process optimization, which leads to a low level of On Time in Full (OTIF) deliveries. This is detrimental to an SME, as customer satisfaction is crucial in this sector. Due to this, the present study proposes an innovative Lean Management model that integrates 5S tools and Machine Learning to increase OTIF in a Peruvian beverage service SME. The research focuses on the Milk Tea and Smoothie product lines, which exhibited stockouts and high preparation and stock review times through analysis and diagnosis. The proposed model results in a reduction of 75.98% in the total cycle time of an order. Additionally, the implementation of Machine Learning helped reduce stockouts by providing a more accurate supply forecast, improving forecast error by 19.72% and 38.71% for tapioca and milk, respectively. These indicators led to a 51.42% increase in OTIF. Thus, this management model effectively innovates by adapting tools often used for manufacturing and production to the services sector, thereby achieving outstanding results in both efficiency and customer satisfaction.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-09-09T21:26:42Z
dc.date.available.none.fl_str_mv 2025-09-09T21:26:42Z
dc.date.issued.fl_str_mv 2025
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo (Scopus)
format article
dc.identifier.issn.none.fl_str_mv 2349-0918
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/23244
dc.identifier.journal.en_EN.fl_str_mv International Journal of Engineering trends and Technology
dc.identifier.isni.none.fl_str_mv 121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14445/22315381/IJETT-V73I3P140
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-105001247293
identifier_str_mv 2349-0918
International Journal of Engineering trends and Technology
121541816
2-s2.0-105001247293
url https://hdl.handle.net/20.500.12724/23244
https://doi.org/10.14445/22315381/IJETT-V73I3P140
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 2349-0918
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.en_EN.fl_str_mv Seventh Sense Research Group
dc.publisher.country.none.fl_str_mv MY
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1849149263616933888
score 13.881323
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).