Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
Descripción del Articulo
The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous stud...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/23245 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/23245 https://doi.org/10.14445/22315381/IJETT-V72I11P118 |
| Nivel de acceso: | acceso abierto |
| Materia: | Pendiente |
| id |
RULI_1272753c8f5c7c3109aa51e956bf4887 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/23245 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| spelling |
Mendoza Sotomayor, RaúlSabogal Arias, José AntonioQuiroz Flores, Juan CarlosQuiroz Flores, Juan CarlosMendoza Sotomayor, Raúl (Ingeniería Industrial)Sabogal Arias, José Antonio (Ingeniería Industrial)2025-09-09T21:26:42Z2025-09-09T21:26:42Z20242349-0918https://hdl.handle.net/20.500.12724/23245International Journal of Engineering Trends and Technology121541816https://doi.org/10.14445/22315381/IJETT-V72I11P1182-s2.0-85210930953The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous studies have explored methodologies such as Six Sigma, Lean Manufacturing and Kaizen to address these challenges, highlighting tools such as VSM, 5S and SMED. The sector urgently needs to improve operator training and implement advanced monitoring and control technologies to reduce equipment failures. This study proposes a model that integrates Lean Manufacturing and Machine Learning to optimize the production process, reduce line change times and reduce the percentage of waste. Key results showed a significant improvement in production efficiency, with a 42.4% reduction in quality control time thanks to the 5s methodology and a reduction in waste through preventive controls. The implementation of SMED managed to increase production efficiency by 33.3%. The academic and socio-economic impact of this research is considerable, as it provides a practical and applicable framework for improving productivity and competitiveness in the beverage industry. It also promotes economic sustainability by optimizing resource use and reducing costs. Future research must explore new directions for the integration of emerging technologies in the field of Lean Manufacturing, encouraging academics and professionals to continue innovating in the improvement of industrial processes.application/htmlengSeventh Sense Research GroupMYurn:issn: 2349-0918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/PendientePendienteOptimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Wasteinfo:eu-repo/semantics/articleArtículo (Scopus)reponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMA20.500.12724/23245oai:repositorio.ulima.edu.pe:20.500.12724/232452025-11-08 09:06:38.982Repositorio Universidad de Limarepositorio@ulima.edu.pe |
| dc.title.en_EN.fl_str_mv |
Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste |
| title |
Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste |
| spellingShingle |
Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste Mendoza Sotomayor, Raúl Pendiente Pendiente |
| title_short |
Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste |
| title_full |
Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste |
| title_fullStr |
Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste |
| title_full_unstemmed |
Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste |
| title_sort |
Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste |
| author |
Mendoza Sotomayor, Raúl |
| author_facet |
Mendoza Sotomayor, Raúl Sabogal Arias, José Antonio Quiroz Flores, Juan Carlos |
| author_role |
author |
| author2 |
Sabogal Arias, José Antonio Quiroz Flores, Juan Carlos |
| author2_role |
author author |
| dc.contributor.other.none.fl_str_mv |
Quiroz Flores, Juan Carlos |
| dc.contributor.student.none.fl_str_mv |
Mendoza Sotomayor, Raúl (Ingeniería Industrial) Sabogal Arias, José Antonio (Ingeniería Industrial) |
| dc.contributor.author.fl_str_mv |
Mendoza Sotomayor, Raúl Sabogal Arias, José Antonio Quiroz Flores, Juan Carlos |
| dc.subject.none.fl_str_mv |
Pendiente |
| topic |
Pendiente Pendiente |
| dc.subject.ocde.none.fl_str_mv |
Pendiente |
| description |
The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous studies have explored methodologies such as Six Sigma, Lean Manufacturing and Kaizen to address these challenges, highlighting tools such as VSM, 5S and SMED. The sector urgently needs to improve operator training and implement advanced monitoring and control technologies to reduce equipment failures. This study proposes a model that integrates Lean Manufacturing and Machine Learning to optimize the production process, reduce line change times and reduce the percentage of waste. Key results showed a significant improvement in production efficiency, with a 42.4% reduction in quality control time thanks to the 5s methodology and a reduction in waste through preventive controls. The implementation of SMED managed to increase production efficiency by 33.3%. The academic and socio-economic impact of this research is considerable, as it provides a practical and applicable framework for improving productivity and competitiveness in the beverage industry. It also promotes economic sustainability by optimizing resource use and reducing costs. Future research must explore new directions for the integration of emerging technologies in the field of Lean Manufacturing, encouraging academics and professionals to continue innovating in the improvement of industrial processes. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-09-09T21:26:42Z |
| dc.date.available.none.fl_str_mv |
2025-09-09T21:26:42Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo (Scopus) |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
2349-0918 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/23245 |
| dc.identifier.journal.en_EN.fl_str_mv |
International Journal of Engineering Trends and Technology |
| dc.identifier.isni.none.fl_str_mv |
121541816 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14445/22315381/IJETT-V72I11P118 |
| dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85210930953 |
| identifier_str_mv |
2349-0918 International Journal of Engineering Trends and Technology 121541816 2-s2.0-85210930953 |
| url |
https://hdl.handle.net/20.500.12724/23245 https://doi.org/10.14445/22315381/IJETT-V72I11P118 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2349-0918 |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/html |
| dc.publisher.none.fl_str_mv |
Seventh Sense Research Group |
| dc.publisher.country.none.fl_str_mv |
MY |
| publisher.none.fl_str_mv |
Seventh Sense Research Group |
| dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1849149165624360960 |
| score |
13.881323 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).