Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste

Descripción del Articulo

The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous stud...

Descripción completa

Detalles Bibliográficos
Autores: Mendoza Sotomayor, Raúl, Sabogal Arias, José Antonio, Quiroz Flores, Juan Carlos
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/23245
Enlace del recurso:https://hdl.handle.net/20.500.12724/23245
https://doi.org/10.14445/22315381/IJETT-V72I11P118
Nivel de acceso:acceso abierto
Materia:Pendiente
id RULI_1272753c8f5c7c3109aa51e956bf4887
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/23245
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
spelling Mendoza Sotomayor, RaúlSabogal Arias, José AntonioQuiroz Flores, Juan CarlosQuiroz Flores, Juan CarlosMendoza Sotomayor, Raúl (Ingeniería Industrial)Sabogal Arias, José Antonio (Ingeniería Industrial)2025-09-09T21:26:42Z2025-09-09T21:26:42Z20242349-0918https://hdl.handle.net/20.500.12724/23245International Journal of Engineering Trends and Technology121541816https://doi.org/10.14445/22315381/IJETT-V72I11P1182-s2.0-85210930953The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous studies have explored methodologies such as Six Sigma, Lean Manufacturing and Kaizen to address these challenges, highlighting tools such as VSM, 5S and SMED. The sector urgently needs to improve operator training and implement advanced monitoring and control technologies to reduce equipment failures. This study proposes a model that integrates Lean Manufacturing and Machine Learning to optimize the production process, reduce line change times and reduce the percentage of waste. Key results showed a significant improvement in production efficiency, with a 42.4% reduction in quality control time thanks to the 5s methodology and a reduction in waste through preventive controls. The implementation of SMED managed to increase production efficiency by 33.3%. The academic and socio-economic impact of this research is considerable, as it provides a practical and applicable framework for improving productivity and competitiveness in the beverage industry. It also promotes economic sustainability by optimizing resource use and reducing costs. Future research must explore new directions for the integration of emerging technologies in the field of Lean Manufacturing, encouraging academics and professionals to continue innovating in the improvement of industrial processes.application/htmlengSeventh Sense Research GroupMYurn:issn: 2349-0918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/PendientePendienteOptimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Wasteinfo:eu-repo/semantics/articleArtículo (Scopus)reponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMA20.500.12724/23245oai:repositorio.ulima.edu.pe:20.500.12724/232452025-11-08 09:06:38.982Repositorio Universidad de Limarepositorio@ulima.edu.pe
dc.title.en_EN.fl_str_mv Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
title Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
spellingShingle Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
Mendoza Sotomayor, Raúl
Pendiente
Pendiente
title_short Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
title_full Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
title_fullStr Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
title_full_unstemmed Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
title_sort Optimizing Beverage Manufacturing: Integrating Lean Manufacturing and Machine Learning to Enhance Efficiency and Reduce Waste
author Mendoza Sotomayor, Raúl
author_facet Mendoza Sotomayor, Raúl
Sabogal Arias, José Antonio
Quiroz Flores, Juan Carlos
author_role author
author2 Sabogal Arias, José Antonio
Quiroz Flores, Juan Carlos
author2_role author
author
dc.contributor.other.none.fl_str_mv Quiroz Flores, Juan Carlos
dc.contributor.student.none.fl_str_mv Mendoza Sotomayor, Raúl (Ingeniería Industrial)
Sabogal Arias, José Antonio (Ingeniería Industrial)
dc.contributor.author.fl_str_mv Mendoza Sotomayor, Raúl
Sabogal Arias, José Antonio
Quiroz Flores, Juan Carlos
dc.subject.none.fl_str_mv Pendiente
topic Pendiente
Pendiente
dc.subject.ocde.none.fl_str_mv Pendiente
description The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous studies have explored methodologies such as Six Sigma, Lean Manufacturing and Kaizen to address these challenges, highlighting tools such as VSM, 5S and SMED. The sector urgently needs to improve operator training and implement advanced monitoring and control technologies to reduce equipment failures. This study proposes a model that integrates Lean Manufacturing and Machine Learning to optimize the production process, reduce line change times and reduce the percentage of waste. Key results showed a significant improvement in production efficiency, with a 42.4% reduction in quality control time thanks to the 5s methodology and a reduction in waste through preventive controls. The implementation of SMED managed to increase production efficiency by 33.3%. The academic and socio-economic impact of this research is considerable, as it provides a practical and applicable framework for improving productivity and competitiveness in the beverage industry. It also promotes economic sustainability by optimizing resource use and reducing costs. Future research must explore new directions for the integration of emerging technologies in the field of Lean Manufacturing, encouraging academics and professionals to continue innovating in the improvement of industrial processes.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-09-09T21:26:42Z
dc.date.available.none.fl_str_mv 2025-09-09T21:26:42Z
dc.date.issued.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo (Scopus)
format article
dc.identifier.issn.none.fl_str_mv 2349-0918
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/23245
dc.identifier.journal.en_EN.fl_str_mv International Journal of Engineering Trends and Technology
dc.identifier.isni.none.fl_str_mv 121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14445/22315381/IJETT-V72I11P118
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85210930953
identifier_str_mv 2349-0918
International Journal of Engineering Trends and Technology
121541816
2-s2.0-85210930953
url https://hdl.handle.net/20.500.12724/23245
https://doi.org/10.14445/22315381/IJETT-V72I11P118
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 2349-0918
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Seventh Sense Research Group
dc.publisher.country.none.fl_str_mv MY
publisher.none.fl_str_mv Seventh Sense Research Group
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1849149165624360960
score 13.881323
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).