Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
Descripción del Articulo
The prediction of host human miRNA binding to the SARS-COV-2-CoV-2 RNA sequence is of particular interest. This biological process could lead to virus repression, serve as biomarkers for diagnosis, or as potential treatments for this disease. One source of concern is attempting to uncover the viral...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/17576 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/17576 https://doi.org/10.1016/j.imu.2022.100958 |
Nivel de acceso: | acceso abierto |
Materia: | Pandemics RNA viruses COVID-19 Pandemias Virus ARN SARS-CoV-2 (Virus) https://purl.org/pe-repo/ocde/ford#3.00.00 |
id |
RULI_0618fbd470c41c2081078af751e7ffb2 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/17576 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM |
title |
Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM |
spellingShingle |
Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM Gutiérrez Cárdenas, Juan Manuel Pandemics RNA viruses COVID-19 Pandemias Virus ARN SARS-CoV-2 (Virus) https://purl.org/pe-repo/ocde/ford#3.00.00 |
title_short |
Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM |
title_full |
Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM |
title_fullStr |
Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM |
title_full_unstemmed |
Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM |
title_sort |
Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM |
author |
Gutiérrez Cárdenas, Juan Manuel |
author_facet |
Gutiérrez Cárdenas, Juan Manuel Wang, Zenghui |
author_role |
author |
author2 |
Wang, Zenghui |
author2_role |
author |
dc.contributor.other.none.fl_str_mv |
Gutiérrez Cárdenas, Juan Manuel |
dc.contributor.author.fl_str_mv |
Gutiérrez Cárdenas, Juan Manuel Wang, Zenghui |
dc.subject.en_EN.fl_str_mv |
Pandemics RNA viruses COVID-19 |
topic |
Pandemics RNA viruses COVID-19 Pandemias Virus ARN SARS-CoV-2 (Virus) https://purl.org/pe-repo/ocde/ford#3.00.00 |
dc.subject.es_PE.fl_str_mv |
Pandemias Virus ARN SARS-CoV-2 (Virus) |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.00.00 |
description |
The prediction of host human miRNA binding to the SARS-COV-2-CoV-2 RNA sequence is of particular interest. This biological process could lead to virus repression, serve as biomarkers for diagnosis, or as potential treatments for this disease. One source of concern is attempting to uncover the viral regions in which this binding could occur, as well as how these miRNAs binding could affect the SARS-COV-2 virus's processes. Using extracted sequence features from this base pairing, we predicted the relationships between miRNAs that interact with genes involved in immune function and bind to the SARS-COV-2 genome in their 5' UTR region. We compared two supervised models, SVM and Random Forest, with an unsupervised One-Class SVM. When the results of the confusion matrices were inspected, the results of the supervised models were misleading, resulting in a Type II error. However, with the latter model, we achieved an average accuracy of 92%, sensitivity of 96.18%, and specificity of 78%. We hypothesize that studying the bind of miRNAs that affect immunological genes and bind to the SARS-COV-2 virus will lead to potential genetic therapies for fighting the disease or understanding how the immune system is affected when this type of viral infection occurs. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-02-08T20:43:28Z |
dc.date.available.none.fl_str_mv |
2023-02-08T20:43:28Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Gutiérrez-Cárdenas J. & Wang, Z. (2022). Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM. In Informatics in Medicine Unlocked, (30), 1-8. https://doi.org/10.1016/j.imu.2022.100958 |
dc.identifier.issn.none.fl_str_mv |
2352-9148 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/17576 |
dc.identifier.journal.none.fl_str_mv |
Informatics in Medicine Unlocked |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.imu.2022.100958 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85129982354 |
identifier_str_mv |
Gutiérrez-Cárdenas J. & Wang, Z. (2022). Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM. In Informatics in Medicine Unlocked, (30), 1-8. https://doi.org/10.1016/j.imu.2022.100958 2352-9148 Informatics in Medicine Unlocked 0000000121541816 2-s2.0-85129982354 |
url |
https://hdl.handle.net/20.500.12724/17576 https://doi.org/10.1016/j.imu.2022.100958 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:23529148 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Elsevier |
dc.publisher.country.none.fl_str_mv |
GB |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17576/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17576/2/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 3655808e5dd46167956d6870b0f43800 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1844710000844341248 |
spelling |
Gutiérrez Cárdenas, Juan ManuelWang, ZenghuiGutiérrez Cárdenas, Juan Manuel2023-02-08T20:43:28Z2023-02-08T20:43:28Z2022Gutiérrez-Cárdenas J. & Wang, Z. (2022). Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM. In Informatics in Medicine Unlocked, (30), 1-8. https://doi.org/10.1016/j.imu.2022.1009582352-9148https://hdl.handle.net/20.500.12724/17576Informatics in Medicine Unlocked0000000121541816https://doi.org/10.1016/j.imu.2022.1009582-s2.0-85129982354The prediction of host human miRNA binding to the SARS-COV-2-CoV-2 RNA sequence is of particular interest. This biological process could lead to virus repression, serve as biomarkers for diagnosis, or as potential treatments for this disease. One source of concern is attempting to uncover the viral regions in which this binding could occur, as well as how these miRNAs binding could affect the SARS-COV-2 virus's processes. Using extracted sequence features from this base pairing, we predicted the relationships between miRNAs that interact with genes involved in immune function and bind to the SARS-COV-2 genome in their 5' UTR region. We compared two supervised models, SVM and Random Forest, with an unsupervised One-Class SVM. When the results of the confusion matrices were inspected, the results of the supervised models were misleading, resulting in a Type II error. However, with the latter model, we achieved an average accuracy of 92%, sensitivity of 96.18%, and specificity of 78%. We hypothesize that studying the bind of miRNAs that affect immunological genes and bind to the SARS-COV-2 virus will lead to potential genetic therapies for fighting the disease or understanding how the immune system is affected when this type of viral infection occurs.application/htmlengElsevierGBurn:issn:23529148info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPandemicsRNA virusesCOVID-19PandemiasVirus ARNSARS-CoV-2 (Virus)https://purl.org/pe-repo/ocde/ford#3.00.00Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVMinfo:eu-repo/semantics/articleArtículo en ScopusIngeniería de SistemasUniversidad de Lima9LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17576/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17576/2/license_rdf3655808e5dd46167956d6870b0f43800MD5220.500.12724/17576oai:repositorio.ulima.edu.pe:20.500.12724/175762025-03-06 19:25:47.298Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
12.9067135 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).