Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM

Descripción del Articulo

The prediction of host human miRNA binding to the SARS-COV-2-CoV-2 RNA sequence is of particular interest. This biological process could lead to virus repression, serve as biomarkers for diagnosis, or as potential treatments for this disease. One source of concern is attempting to uncover the viral...

Descripción completa

Detalles Bibliográficos
Autores: Gutiérrez Cárdenas, Juan Manuel, Wang, Zenghui
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17576
Enlace del recurso:https://hdl.handle.net/20.500.12724/17576
https://doi.org/10.1016/j.imu.2022.100958
Nivel de acceso:acceso abierto
Materia:Pandemics
RNA viruses
COVID-19
Pandemias
Virus ARN
SARS-CoV-2 (Virus)
https://purl.org/pe-repo/ocde/ford#3.00.00
id RULI_0618fbd470c41c2081078af751e7ffb2
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/17576
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
title Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
spellingShingle Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
Gutiérrez Cárdenas, Juan Manuel
Pandemics
RNA viruses
COVID-19
Pandemias
Virus ARN
SARS-CoV-2 (Virus)
https://purl.org/pe-repo/ocde/ford#3.00.00
title_short Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
title_full Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
title_fullStr Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
title_full_unstemmed Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
title_sort Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM
author Gutiérrez Cárdenas, Juan Manuel
author_facet Gutiérrez Cárdenas, Juan Manuel
Wang, Zenghui
author_role author
author2 Wang, Zenghui
author2_role author
dc.contributor.other.none.fl_str_mv Gutiérrez Cárdenas, Juan Manuel
dc.contributor.author.fl_str_mv Gutiérrez Cárdenas, Juan Manuel
Wang, Zenghui
dc.subject.en_EN.fl_str_mv Pandemics
RNA viruses
COVID-19
topic Pandemics
RNA viruses
COVID-19
Pandemias
Virus ARN
SARS-CoV-2 (Virus)
https://purl.org/pe-repo/ocde/ford#3.00.00
dc.subject.es_PE.fl_str_mv Pandemias
Virus ARN
SARS-CoV-2 (Virus)
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.00.00
description The prediction of host human miRNA binding to the SARS-COV-2-CoV-2 RNA sequence is of particular interest. This biological process could lead to virus repression, serve as biomarkers for diagnosis, or as potential treatments for this disease. One source of concern is attempting to uncover the viral regions in which this binding could occur, as well as how these miRNAs binding could affect the SARS-COV-2 virus's processes. Using extracted sequence features from this base pairing, we predicted the relationships between miRNAs that interact with genes involved in immune function and bind to the SARS-COV-2 genome in their 5' UTR region. We compared two supervised models, SVM and Random Forest, with an unsupervised One-Class SVM. When the results of the confusion matrices were inspected, the results of the supervised models were misleading, resulting in a Type II error. However, with the latter model, we achieved an average accuracy of 92%, sensitivity of 96.18%, and specificity of 78%. We hypothesize that studying the bind of miRNAs that affect immunological genes and bind to the SARS-COV-2 virus will lead to potential genetic therapies for fighting the disease or understanding how the immune system is affected when this type of viral infection occurs.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-02-08T20:43:28Z
dc.date.available.none.fl_str_mv 2023-02-08T20:43:28Z
dc.date.issued.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Gutiérrez-Cárdenas J. & Wang, Z. (2022). Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM. In Informatics in Medicine Unlocked, (30), 1-8. https://doi.org/10.1016/j.imu.2022.100958
dc.identifier.issn.none.fl_str_mv 2352-9148
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/17576
dc.identifier.journal.none.fl_str_mv Informatics in Medicine Unlocked
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.imu.2022.100958
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85129982354
identifier_str_mv Gutiérrez-Cárdenas J. & Wang, Z. (2022). Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM. In Informatics in Medicine Unlocked, (30), 1-8. https://doi.org/10.1016/j.imu.2022.100958
2352-9148
Informatics in Medicine Unlocked
0000000121541816
2-s2.0-85129982354
url https://hdl.handle.net/20.500.12724/17576
https://doi.org/10.1016/j.imu.2022.100958
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:23529148
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.none.fl_str_mv GB
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17576/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17576/2/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
3655808e5dd46167956d6870b0f43800
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1844710000844341248
spelling Gutiérrez Cárdenas, Juan ManuelWang, ZenghuiGutiérrez Cárdenas, Juan Manuel2023-02-08T20:43:28Z2023-02-08T20:43:28Z2022Gutiérrez-Cárdenas J. & Wang, Z. (2022). Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVM. In Informatics in Medicine Unlocked, (30), 1-8. https://doi.org/10.1016/j.imu.2022.1009582352-9148https://hdl.handle.net/20.500.12724/17576Informatics in Medicine Unlocked0000000121541816https://doi.org/10.1016/j.imu.2022.1009582-s2.0-85129982354The prediction of host human miRNA binding to the SARS-COV-2-CoV-2 RNA sequence is of particular interest. This biological process could lead to virus repression, serve as biomarkers for diagnosis, or as potential treatments for this disease. One source of concern is attempting to uncover the viral regions in which this binding could occur, as well as how these miRNAs binding could affect the SARS-COV-2 virus's processes. Using extracted sequence features from this base pairing, we predicted the relationships between miRNAs that interact with genes involved in immune function and bind to the SARS-COV-2 genome in their 5' UTR region. We compared two supervised models, SVM and Random Forest, with an unsupervised One-Class SVM. When the results of the confusion matrices were inspected, the results of the supervised models were misleading, resulting in a Type II error. However, with the latter model, we achieved an average accuracy of 92%, sensitivity of 96.18%, and specificity of 78%. We hypothesize that studying the bind of miRNAs that affect immunological genes and bind to the SARS-COV-2 virus will lead to potential genetic therapies for fighting the disease or understanding how the immune system is affected when this type of viral infection occurs.application/htmlengElsevierGBurn:issn:23529148info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPandemicsRNA virusesCOVID-19PandemiasVirus ARNSARS-CoV-2 (Virus)https://purl.org/pe-repo/ocde/ford#3.00.00Prediction of binding miRNAs involved with immune genes to the SARS-CoV-2 by using sequence features extraction and One-class SVMinfo:eu-repo/semantics/articleArtículo en ScopusIngeniería de SistemasUniversidad de Lima9LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17576/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17576/2/license_rdf3655808e5dd46167956d6870b0f43800MD5220.500.12724/17576oai:repositorio.ulima.edu.pe:20.500.12724/175762025-03-06 19:25:47.298Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.9067135
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).