Joint chance-constrained reliability optimization with general form of distributions
Descripción del Articulo
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty. Stochastic programming models arise as reformulations or extensions of reliability optimization problems with random parameters. Moreover, the resource elements vary and it is reasonab...
| Autores: | , , |
|---|---|
| Formato: | documento de trabajo |
| Fecha de Publicación: | 2014 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/166794 |
| Enlace del recurso: | https://repositorio.pucp.edu.pe/index/handle/123456789/166794 http://dx.doi.org/10.7835/ccwp-2014-01-0005 |
| Nivel de acceso: | acceso abierto |
| Materia: | Chance-constrained programming Reliability optimization Joint constraints General form of distributions http://purl.org/pe-repo/ocde/ford#5.02.04 |
| id |
RPUC_f3a6d84d4ed5d0c321e2a60b9c20d321 |
|---|---|
| oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/166794 |
| network_acronym_str |
RPUC |
| network_name_str |
PUCP-Institucional |
| repository_id_str |
2905 |
| spelling |
Vincent, CharlesIslam Ansari, SaifuKhodabakhshi, Mohammad2019-09-03T00:14:36Z2019-09-03T00:14:36Z2014https://repositorio.pucp.edu.pe/index/handle/123456789/166794http://dx.doi.org/10.7835/ccwp-2014-01-0005Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty. Stochastic programming models arise as reformulations or extensions of reliability optimization problems with random parameters. Moreover, the resource elements vary and it is reasonable to consider them as stochastic variables. In this paper, we describe the chance-constrained reliability stochastic optimization (CCRSO) problem for which the objective is to maximize the system reliability for the given joint chance constraints where only the resource variables are random in nature and which follow different general form of distributions. Few numerical examples are also presented to illustrate the applicability of the methodology.engCENTRUM PublishingPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/pe/Chance-constrained programmingReliability optimizationJoint constraintsGeneral form of distributionshttp://purl.org/pe-repo/ocde/ford#5.02.04Joint chance-constrained reliability optimization with general form of distributionsinfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALCEFE_WP2014-01-0005.pdfCEFE_WP2014-01-0005.pdfTexto completoapplication/pdf410862https://repositorio.pucp.edu.pe/bitstreams/acb64f29-8dd5-4abc-bdf7-2e9e3628478c/download57d8362987aa2f87d52caf6d3ccdcb73MD51trueAnonymousREADTHUMBNAILCEFE_WP2014-01-0005.pdf.jpgCEFE_WP2014-01-0005.pdf.jpgIM Thumbnailimage/jpeg19665https://repositorio.pucp.edu.pe/bitstreams/5f432c5d-dc0b-47d0-be57-f94405c2fd38/downloadd111949123c973783c13c4844c6386cfMD52falseAnonymousREAD20.500.14657/166794oai:repositorio.pucp.edu.pe:20.500.14657/1667942024-10-05 18:30:05.532https://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
| dc.title.es_ES.fl_str_mv |
Joint chance-constrained reliability optimization with general form of distributions |
| title |
Joint chance-constrained reliability optimization with general form of distributions |
| spellingShingle |
Joint chance-constrained reliability optimization with general form of distributions Vincent, Charles Chance-constrained programming Reliability optimization Joint constraints General form of distributions http://purl.org/pe-repo/ocde/ford#5.02.04 |
| title_short |
Joint chance-constrained reliability optimization with general form of distributions |
| title_full |
Joint chance-constrained reliability optimization with general form of distributions |
| title_fullStr |
Joint chance-constrained reliability optimization with general form of distributions |
| title_full_unstemmed |
Joint chance-constrained reliability optimization with general form of distributions |
| title_sort |
Joint chance-constrained reliability optimization with general form of distributions |
| author |
Vincent, Charles |
| author_facet |
Vincent, Charles Islam Ansari, Saifu Khodabakhshi, Mohammad |
| author_role |
author |
| author2 |
Islam Ansari, Saifu Khodabakhshi, Mohammad |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Vincent, Charles Islam Ansari, Saifu Khodabakhshi, Mohammad |
| dc.subject.es_ES.fl_str_mv |
Chance-constrained programming Reliability optimization Joint constraints General form of distributions |
| topic |
Chance-constrained programming Reliability optimization Joint constraints General form of distributions http://purl.org/pe-repo/ocde/ford#5.02.04 |
| dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#5.02.04 |
| description |
Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty. Stochastic programming models arise as reformulations or extensions of reliability optimization problems with random parameters. Moreover, the resource elements vary and it is reasonable to consider them as stochastic variables. In this paper, we describe the chance-constrained reliability stochastic optimization (CCRSO) problem for which the objective is to maximize the system reliability for the given joint chance constraints where only the resource variables are random in nature and which follow different general form of distributions. Few numerical examples are also presented to illustrate the applicability of the methodology. |
| publishDate |
2014 |
| dc.date.accessioned.none.fl_str_mv |
2019-09-03T00:14:36Z |
| dc.date.available.none.fl_str_mv |
2019-09-03T00:14:36Z |
| dc.date.issued.fl_str_mv |
2014 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper |
| dc.type.other.none.fl_str_mv |
Documento de trabajo |
| format |
workingPaper |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.pucp.edu.pe/index/handle/123456789/166794 |
| dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.7835/ccwp-2014-01-0005 |
| url |
https://repositorio.pucp.edu.pe/index/handle/123456789/166794 http://dx.doi.org/10.7835/ccwp-2014-01-0005 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
CENTRUM Publishing |
| dc.publisher.country.none.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Institucional |
| collection |
PUCP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.pucp.edu.pe/bitstreams/acb64f29-8dd5-4abc-bdf7-2e9e3628478c/download https://repositorio.pucp.edu.pe/bitstreams/5f432c5d-dc0b-47d0-be57-f94405c2fd38/download |
| bitstream.checksum.fl_str_mv |
57d8362987aa2f87d52caf6d3ccdcb73 d111949123c973783c13c4844c6386cf |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
| repository.mail.fl_str_mv |
repositorio@pucp.pe |
| _version_ |
1835639450668892160 |
| score |
13.944437 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).