Joint chance-constrained reliability optimization with general form of distributions

Descripción del Articulo

Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty. Stochastic programming models arise as reformulations or extensions of reliability optimization problems with random parameters. Moreover, the resource elements vary and it is reasonab...

Descripción completa

Detalles Bibliográficos
Autores: Vincent, Charles, Islam Ansari, Saifu, Khodabakhshi, Mohammad
Formato: documento de trabajo
Fecha de Publicación:2014
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/166794
Enlace del recurso:https://repositorio.pucp.edu.pe/index/handle/123456789/166794
http://dx.doi.org/10.7835/ccwp-2014-01-0005
Nivel de acceso:acceso abierto
Materia:Chance-constrained programming
Reliability optimization
Joint constraints
General form of distributions
http://purl.org/pe-repo/ocde/ford#5.02.04
id RPUC_f3a6d84d4ed5d0c321e2a60b9c20d321
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/166794
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Vincent, CharlesIslam Ansari, SaifuKhodabakhshi, Mohammad2019-09-03T00:14:36Z2019-09-03T00:14:36Z2014https://repositorio.pucp.edu.pe/index/handle/123456789/166794http://dx.doi.org/10.7835/ccwp-2014-01-0005Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty. Stochastic programming models arise as reformulations or extensions of reliability optimization problems with random parameters. Moreover, the resource elements vary and it is reasonable to consider them as stochastic variables. In this paper, we describe the chance-constrained reliability stochastic optimization (CCRSO) problem for which the objective is to maximize the system reliability for the given joint chance constraints where only the resource variables are random in nature and which follow different general form of distributions. Few numerical examples are also presented to illustrate the applicability of the methodology.engCENTRUM PublishingPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/pe/Chance-constrained programmingReliability optimizationJoint constraintsGeneral form of distributionshttp://purl.org/pe-repo/ocde/ford#5.02.04Joint chance-constrained reliability optimization with general form of distributionsinfo:eu-repo/semantics/workingPaperDocumento de trabajoreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPORIGINALCEFE_WP2014-01-0005.pdfCEFE_WP2014-01-0005.pdfTexto completoapplication/pdf410862https://repositorio.pucp.edu.pe/bitstreams/acb64f29-8dd5-4abc-bdf7-2e9e3628478c/download57d8362987aa2f87d52caf6d3ccdcb73MD51trueAnonymousREADTHUMBNAILCEFE_WP2014-01-0005.pdf.jpgCEFE_WP2014-01-0005.pdf.jpgIM Thumbnailimage/jpeg19665https://repositorio.pucp.edu.pe/bitstreams/5f432c5d-dc0b-47d0-be57-f94405c2fd38/downloadd111949123c973783c13c4844c6386cfMD52falseAnonymousREAD20.500.14657/166794oai:repositorio.pucp.edu.pe:20.500.14657/1667942024-10-05 18:30:05.532https://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Joint chance-constrained reliability optimization with general form of distributions
title Joint chance-constrained reliability optimization with general form of distributions
spellingShingle Joint chance-constrained reliability optimization with general form of distributions
Vincent, Charles
Chance-constrained programming
Reliability optimization
Joint constraints
General form of distributions
http://purl.org/pe-repo/ocde/ford#5.02.04
title_short Joint chance-constrained reliability optimization with general form of distributions
title_full Joint chance-constrained reliability optimization with general form of distributions
title_fullStr Joint chance-constrained reliability optimization with general form of distributions
title_full_unstemmed Joint chance-constrained reliability optimization with general form of distributions
title_sort Joint chance-constrained reliability optimization with general form of distributions
author Vincent, Charles
author_facet Vincent, Charles
Islam Ansari, Saifu
Khodabakhshi, Mohammad
author_role author
author2 Islam Ansari, Saifu
Khodabakhshi, Mohammad
author2_role author
author
dc.contributor.author.fl_str_mv Vincent, Charles
Islam Ansari, Saifu
Khodabakhshi, Mohammad
dc.subject.es_ES.fl_str_mv Chance-constrained programming
Reliability optimization
Joint constraints
General form of distributions
topic Chance-constrained programming
Reliability optimization
Joint constraints
General form of distributions
http://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#5.02.04
description Probabilistic or stochastic programming is a framework for modeling optimization problems that involve uncertainty. Stochastic programming models arise as reformulations or extensions of reliability optimization problems with random parameters. Moreover, the resource elements vary and it is reasonable to consider them as stochastic variables. In this paper, we describe the chance-constrained reliability stochastic optimization (CCRSO) problem for which the objective is to maximize the system reliability for the given joint chance constraints where only the resource variables are random in nature and which follow different general form of distributions. Few numerical examples are also presented to illustrate the applicability of the methodology.
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2019-09-03T00:14:36Z
dc.date.available.none.fl_str_mv 2019-09-03T00:14:36Z
dc.date.issued.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.other.none.fl_str_mv Documento de trabajo
format workingPaper
dc.identifier.uri.none.fl_str_mv https://repositorio.pucp.edu.pe/index/handle/123456789/166794
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.7835/ccwp-2014-01-0005
url https://repositorio.pucp.edu.pe/index/handle/123456789/166794
http://dx.doi.org/10.7835/ccwp-2014-01-0005
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv CENTRUM Publishing
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
bitstream.url.fl_str_mv https://repositorio.pucp.edu.pe/bitstreams/acb64f29-8dd5-4abc-bdf7-2e9e3628478c/download
https://repositorio.pucp.edu.pe/bitstreams/5f432c5d-dc0b-47d0-be57-f94405c2fd38/download
bitstream.checksum.fl_str_mv 57d8362987aa2f87d52caf6d3ccdcb73
d111949123c973783c13c4844c6386cf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639450668892160
score 13.944437
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).