La hipótesis de Riemann como problema de análisis funcional

Descripción del Articulo

J. Alcántara-Bode demuestra en [3] que la Hipótesis de Riemann es verdad si y sólo si el operador integral en L2 (0,1), (Aρf)(o)=So1p(0/x) f(x) dx es inyectivo, dondeρ es la función parte fraccionaria. El operador Aρ es Hilbert-Schmidt, no nuclear y se conoce su determinante de Fredholm. En el prese...

Descripción completa

Detalles Bibliográficos
Autor: Sotelo Pejerrey, Alfredo
Formato: tesis doctoral
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/182325
Enlace del recurso:http://hdl.handle.net/20.500.12404/20814
Nivel de acceso:acceso abierto
Materia:Superficies de Riemann
Ecuaciones de Volterra
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:J. Alcántara-Bode demuestra en [3] que la Hipótesis de Riemann es verdad si y sólo si el operador integral en L2 (0,1), (Aρf)(o)=So1p(0/x) f(x) dx es inyectivo, dondeρ es la función parte fraccionaria. El operador Aρ es Hilbert-Schmidt, no nuclear y se conoce su determinante de Fredholm. En el presente trabajo de tesis, varias herramientas del análisis funcional son usadas para obtener información adicional no trivial de los operadores Aρ y Aρ (α), donde (Aρ(α)f)(o)= ş10 ρ(αθ/x) f(x)d(x). Usando el teorema de descomposición de Ringrose de Aρ y Aρ(α), brindamos información espectral de sus partes normales y Volterras, así como una estimativa de sus números singulares. Basados en el teorema de Müntz, se demuestran fórmulas que involucran a los operadores Aρ(α) y Aρ(β), aplicamos el lema de Douglas para establecer que h E Ran (Aρ(α)) y Ker (A˚ρ (α))= {0}, para todo 0 < α<1 y h (x)= x. Situado en el contexto de trazas singulares, demostramos que si Aρ pertenece a algún ideal geométricamente estable I de L2 (0,1), entonces τ(Aρ)= 0 para toda τtraza singular no trivial en I. Esto fue posible gracias a los resultados de N. Kalton, A. Albeverio, D. Guido, T. Isola y el hecho que los operadores 1/αAρ(α)- 1/βAρ(β)son Volterra. Finalmente, formulas inductivas son presentadas para calcular las trazas de las potencias de Aρ y Aρ(α), así como la construcción de una familia de isometrías parciales con propiedades muy particulares.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).