Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso

Descripción del Articulo

The web is a giant resource of data and information about security, health, education, and others, matters that have great utility for people, but to get a synthesis or abstract about one or many documents is an expensive labor, which with manual process might be impossible due to the huge amount of...

Descripción completa

Detalles Bibliográficos
Autor: Valderrama Vilca, Gregory Cesar
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/145673
Enlace del recurso:http://hdl.handle.net/20.500.12404/9361
Nivel de acceso:acceso abierto
Materia:Computación semántica
Resúmenes
Semántica
https://purl.org/pe-repo/ocde/ford#1.02.00
id RPUC_94d27a3a01ac2e8c22901eb2cc264354
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/145673
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Sobrevilla Cabezudo, Marco AntonioValderrama Vilca, Gregory Cesar2017-09-20T23:47:13Z2017-09-20T23:47:13Z20172017-09-20http://hdl.handle.net/20.500.12404/9361The web is a giant resource of data and information about security, health, education, and others, matters that have great utility for people, but to get a synthesis or abstract about one or many documents is an expensive labor, which with manual process might be impossible due to the huge amount of data. Abstract generation is a challenging task, due to that involves analysis and comprehension of the written text in non structural natural language dependent of a context and it must describe an events synthesis or knowledge in a simple form, becoming natural for any reader. There are diverse approaches to summarize. These categorized into extractive or abstractive. On abstractive technique, summaries are generated starting from selecting outstanding sentences on source text. Abstractive summaries are created by regenerating the content extracted from source text, through that phrases are reformulated by terms fusion, compression or suppression processes. In this manner, paraphrasing sentences are obtained or even sentences were not in the original text. This summarize type has a major probability to reach coherence and smoothness like one generated by human beings. The present work implements a method that allows to integrate syntactic, semantic (AMR annotator) and discursive (RST) information into a conceptual graph. This will be summarized through the use of a new measure of concept similarity on WordNet.To find the most relevant concepts we use PageRank, considering all discursive information given by the O”Donell method application. With the most important concepts and semantic roles information got from the PropBank, a natural language generation method was implemented with tool SimpleNLG. In this work we can appreciated the results of applying this method to the corpus of Document Understanding Conference 2002 and tested by Rouge metric, widely used in the automatic summarization task. Our method reaches a measure F1 of 24 % in Rouge-1 metric for the mono-document abstract generation task. This shows that using these techniques are workable and even more profitable and recommended configurations and useful tools for this task.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Computación semánticaResúmenesSemánticahttps://purl.org/pe-repo/ocde/ford#1.02.00Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discursoinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Informática con mención en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoInformática con mención en Ciencias de la Computación611087https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/145673oai:repositorio.pucp.edu.pe:20.500.14657/1456732024-06-10 10:55:23.067http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso
title Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso
spellingShingle Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso
Valderrama Vilca, Gregory Cesar
Computación semántica
Resúmenes
Semántica
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso
title_full Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso
title_fullStr Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso
title_full_unstemmed Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso
title_sort Generación automática de resúmenes abstractivos mono documento utilizando análisis semántico y del discurso
author Valderrama Vilca, Gregory Cesar
author_facet Valderrama Vilca, Gregory Cesar
author_role author
dc.contributor.advisor.fl_str_mv Sobrevilla Cabezudo, Marco Antonio
dc.contributor.author.fl_str_mv Valderrama Vilca, Gregory Cesar
dc.subject.es_ES.fl_str_mv Computación semántica
Resúmenes
Semántica
topic Computación semántica
Resúmenes
Semántica
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description The web is a giant resource of data and information about security, health, education, and others, matters that have great utility for people, but to get a synthesis or abstract about one or many documents is an expensive labor, which with manual process might be impossible due to the huge amount of data. Abstract generation is a challenging task, due to that involves analysis and comprehension of the written text in non structural natural language dependent of a context and it must describe an events synthesis or knowledge in a simple form, becoming natural for any reader. There are diverse approaches to summarize. These categorized into extractive or abstractive. On abstractive technique, summaries are generated starting from selecting outstanding sentences on source text. Abstractive summaries are created by regenerating the content extracted from source text, through that phrases are reformulated by terms fusion, compression or suppression processes. In this manner, paraphrasing sentences are obtained or even sentences were not in the original text. This summarize type has a major probability to reach coherence and smoothness like one generated by human beings. The present work implements a method that allows to integrate syntactic, semantic (AMR annotator) and discursive (RST) information into a conceptual graph. This will be summarized through the use of a new measure of concept similarity on WordNet.To find the most relevant concepts we use PageRank, considering all discursive information given by the O”Donell method application. With the most important concepts and semantic roles information got from the PropBank, a natural language generation method was implemented with tool SimpleNLG. In this work we can appreciated the results of applying this method to the corpus of Document Understanding Conference 2002 and tested by Rouge metric, widely used in the automatic summarization task. Our method reaches a measure F1 of 24 % in Rouge-1 metric for the mono-document abstract generation task. This shows that using these techniques are workable and even more profitable and recommended configurations and useful tools for this task.
publishDate 2017
dc.date.accessioned.es_ES.fl_str_mv 2017-09-20T23:47:13Z
dc.date.available.es_ES.fl_str_mv 2017-09-20T23:47:13Z
dc.date.created.es_ES.fl_str_mv 2017
dc.date.issued.fl_str_mv 2017-09-20
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/9361
url http://hdl.handle.net/20.500.12404/9361
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639140235870208
score 13.927358
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).