El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables
Descripción del Articulo
El objetivo principal de este trabajo es concluir la prueba del teorema de Hasse- Minkowsky (de manera específica, los casos n = 4 y n ≥ 5) iniciada en mi tesis de pregrado [2]. Adicionalmente, regresaremos a resultados cuya prueba quedó pendiente en aquella tesis. Es más, como gran parte de las def...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2016 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/146441 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/7482 |
Nivel de acceso: | acceso abierto |
Materia: | Teoría de los números Números p-ádicos Formas cuadráticas https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
RPUC_9294a7a1bd066a312a4d27498d7a210f |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/146441 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Poirier Schmitz, Alfredo BernardoCastillo García, Alberto Alonso2016-11-14T16:37:31Z2016-11-14T16:37:31Z20162016-11-14http://hdl.handle.net/20.500.12404/7482El objetivo principal de este trabajo es concluir la prueba del teorema de Hasse- Minkowsky (de manera específica, los casos n = 4 y n ≥ 5) iniciada en mi tesis de pregrado [2]. Adicionalmente, regresaremos a resultados cuya prueba quedó pendiente en aquella tesis. Es más, como gran parte de las definiciones y resultados que necesitamos se encuentran ahí, haremos múltiples referencias a [2] a lo largo de este trabajo. En el primer capítulo nos ocuparemos del teorema de Chevalley, pero principalmente buscamos cómo relacionar este resultado con el lema de Hensel. Ello nos permitirá obtener un mecanismo para encontrar condiciones bajo las cuales una forma cuadrática representa a cero. La ventaja de semejante desarrollo reside en que solo se necesita trabajar con ecuaciones sobre cuerpos finitos (en este caso Z/pZ), en donde encontrar soluciones resulta menos laborioso que en Qp. En el segundo capítulo definimos el símbolo de Legendre, una herramienta necesaria para la prueba de la bimultiplicidad del símbolo de Hilbert (resultado que quedó pendiente en la tesis de pregrado). Como aplicación del concepto y propiedades del símbolo de Legendre probaremos la ley de reciprocidad cuadrática, la cual es útil por mérito propio. En el tercer capítulo probaremos la bimultiplicidad del símbolo de Hilbert, el primer resultado de relevancia en esta tesis. Lo que en realidad haremos será establecer una fórmula que nos permita hallar el símbolo de Hilbert de cualquier par de números p-´adicos; a partir de ´esta, la bimultiplicidad del símbolo resulta obvia. Cerramos el capítulo con la prueba de una proposición que verá utilidad cuando se ataque el teorema de Hasse-Minkowsky. En el cuarto capítulo exhibiremos algunas propiedades topológicas del cuerpo Qp. La más notable es el teorema de aproximación débil, que será utilizado para tratar el teorema central. En el quinto capítulo trabajaremos con símbolos de Hilbert aplicados al cuerpo global Q. Además, se probará un segundo resultado de relevancia, la fórmula producto de Hilbert. Luego se desarrollarán ejemplos ilustrativos sobre ecuaciones y sistemas de ecuaciones con símbolos de Hilbert, lo que dará lugar a un resultado auxiliar que será empleado en la prueba del teorema de Hasse-Minkowsky. El sexto capítulo es básicamente una extensión del capítulo5 de [2]. Nos limitamos a presentar algunos resultados adicionales y a probar una proposición que quedó pendiente en [2]. En el sétimo capítulo concluimos la prueba del teorema de Hasse-Minkowsky para los casos n = 4 y n ≥ 5. El octavo y último capítulo es aplicativo. Utilizaremos el teorema de Hasse- Minkowsky para clasificar formas cuadráticas sobre los racionales.TesisspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Teoría de los númerosNúmeros p-ádicosFormas cuadráticashttps://purl.org/pe-repo/ocde/ford#1.01.00El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variablesinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en MatemáticasMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoMatemáticas10803756541137https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146441oai:repositorio.pucp.edu.pe:20.500.14657/1464412024-06-10 10:54:46.519http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.es_ES.fl_str_mv |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables |
title |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables |
spellingShingle |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables Castillo García, Alberto Alonso Teoría de los números Números p-ádicos Formas cuadráticas https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables |
title_full |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables |
title_fullStr |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables |
title_full_unstemmed |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables |
title_sort |
El teorema de Hasse-Minkowsky para formas cuadráticas de cuatro o más variables |
author |
Castillo García, Alberto Alonso |
author_facet |
Castillo García, Alberto Alonso |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Poirier Schmitz, Alfredo Bernardo |
dc.contributor.author.fl_str_mv |
Castillo García, Alberto Alonso |
dc.subject.es_ES.fl_str_mv |
Teoría de los números Números p-ádicos Formas cuadráticas |
topic |
Teoría de los números Números p-ádicos Formas cuadráticas https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
El objetivo principal de este trabajo es concluir la prueba del teorema de Hasse- Minkowsky (de manera específica, los casos n = 4 y n ≥ 5) iniciada en mi tesis de pregrado [2]. Adicionalmente, regresaremos a resultados cuya prueba quedó pendiente en aquella tesis. Es más, como gran parte de las definiciones y resultados que necesitamos se encuentran ahí, haremos múltiples referencias a [2] a lo largo de este trabajo. En el primer capítulo nos ocuparemos del teorema de Chevalley, pero principalmente buscamos cómo relacionar este resultado con el lema de Hensel. Ello nos permitirá obtener un mecanismo para encontrar condiciones bajo las cuales una forma cuadrática representa a cero. La ventaja de semejante desarrollo reside en que solo se necesita trabajar con ecuaciones sobre cuerpos finitos (en este caso Z/pZ), en donde encontrar soluciones resulta menos laborioso que en Qp. En el segundo capítulo definimos el símbolo de Legendre, una herramienta necesaria para la prueba de la bimultiplicidad del símbolo de Hilbert (resultado que quedó pendiente en la tesis de pregrado). Como aplicación del concepto y propiedades del símbolo de Legendre probaremos la ley de reciprocidad cuadrática, la cual es útil por mérito propio. En el tercer capítulo probaremos la bimultiplicidad del símbolo de Hilbert, el primer resultado de relevancia en esta tesis. Lo que en realidad haremos será establecer una fórmula que nos permita hallar el símbolo de Hilbert de cualquier par de números p-´adicos; a partir de ´esta, la bimultiplicidad del símbolo resulta obvia. Cerramos el capítulo con la prueba de una proposición que verá utilidad cuando se ataque el teorema de Hasse-Minkowsky. En el cuarto capítulo exhibiremos algunas propiedades topológicas del cuerpo Qp. La más notable es el teorema de aproximación débil, que será utilizado para tratar el teorema central. En el quinto capítulo trabajaremos con símbolos de Hilbert aplicados al cuerpo global Q. Además, se probará un segundo resultado de relevancia, la fórmula producto de Hilbert. Luego se desarrollarán ejemplos ilustrativos sobre ecuaciones y sistemas de ecuaciones con símbolos de Hilbert, lo que dará lugar a un resultado auxiliar que será empleado en la prueba del teorema de Hasse-Minkowsky. El sexto capítulo es básicamente una extensión del capítulo5 de [2]. Nos limitamos a presentar algunos resultados adicionales y a probar una proposición que quedó pendiente en [2]. En el sétimo capítulo concluimos la prueba del teorema de Hasse-Minkowsky para los casos n = 4 y n ≥ 5. El octavo y último capítulo es aplicativo. Utilizaremos el teorema de Hasse- Minkowsky para clasificar formas cuadráticas sobre los racionales. |
publishDate |
2016 |
dc.date.accessioned.es_ES.fl_str_mv |
2016-11-14T16:37:31Z |
dc.date.available.es_ES.fl_str_mv |
2016-11-14T16:37:31Z |
dc.date.created.es_ES.fl_str_mv |
2016 |
dc.date.issued.fl_str_mv |
2016-11-14 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.other.none.fl_str_mv |
Tesis de maestría |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/7482 |
url |
http://hdl.handle.net/20.500.12404/7482 |
dc.language.iso.es_ES.fl_str_mv |
spa |
language |
spa |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638975133384704 |
score |
13.982926 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).