Evolutionary games in finite populations

Descripción del Articulo

The classical replicator dynamics for evolutionary games in infinite populations formulated by Taylor and Jonker is invariant when all the payoff values are shifted by a constant. We demonstrate that this is not the case in finite populations. We show that both deterministic and stochastic evolution...

Descripción completa

Detalles Bibliográficos
Autores: Rivasplata Zevallos, Omar, Rychtar, Jan, Sykes, Christian
Formato: artículo
Fecha de Publicación:2006
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/183125
Enlace del recurso:https://revistas.pucp.edu.pe/index.php/promathematica/article/view/10244/10689
Nivel de acceso:acceso abierto
Materia:Evolutionary Stability
ESS
Finite populations
Game dynamics
https://purl.org/pe-repo/ocde/ford#1.01.00
id RPUC_72e5aaa459559ab93b99f5743174976f
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/183125
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Rivasplata Zevallos, OmarRychtar, JanSykes, Christian2022-01-21T15:06:59Z2022-01-21T15:06:59Z2006https://revistas.pucp.edu.pe/index.php/promathematica/article/view/10244/10689The classical replicator dynamics for evolutionary games in infinite populations formulated by Taylor and Jonker is invariant when all the payoff values are shifted by a constant. We demonstrate that this is not the case in finite populations. We show that both deterministic and stochastic evolutionary game dynamics based on the original model of Taylor and Jonker depend on the actual payoff values. We present a variant of Maynard Smith 's evolutionary stability criteria for finite populations that are large ( and possibly of unknown size). We give a full description for the case of a two strategy game. Our main contribution is a statement that an evolutionarily stable strategy as originally defined by M aynard Smith still works for large populations provided that it does well against itself.spaPontificia Universidad Católica del PerúPEurn:issn:2305-2430urn:issn:1012-3938info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Pro Mathematica; Vol. 20 Núm. 39-40 (2006)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPEvolutionary StabilityESSFinite populationsGame dynamicshttps://purl.org/pe-repo/ocde/ford#1.01.00Evolutionary games in finite populationsinfo:eu-repo/semantics/articleArtículo20.500.14657/183125oai:repositorio.pucp.edu.pe:20.500.14657/1831252024-06-05 15:21:56.209http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Evolutionary games in finite populations
title Evolutionary games in finite populations
spellingShingle Evolutionary games in finite populations
Rivasplata Zevallos, Omar
Evolutionary Stability
ESS
Finite populations
Game dynamics
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short Evolutionary games in finite populations
title_full Evolutionary games in finite populations
title_fullStr Evolutionary games in finite populations
title_full_unstemmed Evolutionary games in finite populations
title_sort Evolutionary games in finite populations
author Rivasplata Zevallos, Omar
author_facet Rivasplata Zevallos, Omar
Rychtar, Jan
Sykes, Christian
author_role author
author2 Rychtar, Jan
Sykes, Christian
author2_role author
author
dc.contributor.author.fl_str_mv Rivasplata Zevallos, Omar
Rychtar, Jan
Sykes, Christian
dc.subject.es_ES.fl_str_mv Evolutionary Stability
ESS
Finite populations
Game dynamics
topic Evolutionary Stability
ESS
Finite populations
Game dynamics
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description The classical replicator dynamics for evolutionary games in infinite populations formulated by Taylor and Jonker is invariant when all the payoff values are shifted by a constant. We demonstrate that this is not the case in finite populations. We show that both deterministic and stochastic evolutionary game dynamics based on the original model of Taylor and Jonker depend on the actual payoff values. We present a variant of Maynard Smith 's evolutionary stability criteria for finite populations that are large ( and possibly of unknown size). We give a full description for the case of a two strategy game. Our main contribution is a statement that an evolutionarily stable strategy as originally defined by M aynard Smith still works for large populations provided that it does well against itself.
publishDate 2006
dc.date.accessioned.none.fl_str_mv 2022-01-21T15:06:59Z
dc.date.available.none.fl_str_mv 2022-01-21T15:06:59Z
dc.date.issued.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv https://revistas.pucp.edu.pe/index.php/promathematica/article/view/10244/10689
url https://revistas.pucp.edu.pe/index.php/promathematica/article/view/10244/10689
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:issn:2305-2430
urn:issn:1012-3938
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.es_ES.fl_str_mv Pro Mathematica; Vol. 20 Núm. 39-40 (2006)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639864730583040
score 13.814859
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).