An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution

Descripción del Articulo

This paper represents empirical studies of stochastic volatility (SV) models for daily stocks returns data of a set of Latin American countries (Argentina, Brazil, Chile, Mexico and Peru) for the sample period 1996:01-2013:12. We estimate SV models incorporating both leverage effects and skewed heav...

Descripción completa

Detalles Bibliográficos
Autor: Lengua Lafosse, Patricia
Formato: tesis de maestría
Fecha de Publicación:2015
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/144830
Enlace del recurso:http://hdl.handle.net/20.500.12404/6167
Nivel de acceso:acceso abierto
Materia:Estadística bayesiana
Análisis estocástico
Bolsa de Valores
https://purl.org/pe-repo/ocde/ford#1.01.03
id RPUC_64ad391e17787d530ec3935e238c30da
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/144830
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Bayes Rodríguez, Cristian LuisLengua Lafosse, Patricia2015-07-17T15:34:04Z2015-07-17T15:34:04Z20152015-07-17http://hdl.handle.net/20.500.12404/6167This paper represents empirical studies of stochastic volatility (SV) models for daily stocks returns data of a set of Latin American countries (Argentina, Brazil, Chile, Mexico and Peru) for the sample period 1996:01-2013:12. We estimate SV models incorporating both leverage effects and skewed heavy-tailed disturbances taking into account the GH Skew Student’s t-distribution using the Bayesian estimation method proposed by Nakajima and Omori (2012). A model comparison between the competing SV models with symmetric Student´s t-disturbances is provided using the log marginal likelihoods in the empirical study. A prior sensitivity analysis is also provided. The results suggest that there are leverage effects in all indices considered but there is not enough evidence for Peru, and skewed heavy-tailed disturbances is confirmed only for Argentina, symmetric heavy-tailed disturbances for Mexico, Brazil and Chile, and symmetric Normal disturbances for Peru. Furthermore, we find that the GH Skew Student s t-disturbance distribution in the SV model is successful in describing the distribution of the daily stock return data for Peru, Argentina and Brazil over the traditional symmetric Student´s t-disturbance distribution.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Estadística bayesianaAnálisis estocásticoBolsa de Valoreshttps://purl.org/pe-repo/ocde/ford#1.01.03An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distributioninfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en EstadísticaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoEstadística40372640https://orcid.org/0000-0003-0474-7921542037https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/144830oai:repositorio.pucp.edu.pe:20.500.14657/1448302024-06-10 09:39:50.995http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution
title An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution
spellingShingle An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution
Lengua Lafosse, Patricia
Estadística bayesiana
Análisis estocástico
Bolsa de Valores
https://purl.org/pe-repo/ocde/ford#1.01.03
title_short An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution
title_full An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution
title_fullStr An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution
title_full_unstemmed An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution
title_sort An empirical application of stochastic volatility models to Latin-American stock returns using GH skew student's t-distribution
author Lengua Lafosse, Patricia
author_facet Lengua Lafosse, Patricia
author_role author
dc.contributor.advisor.fl_str_mv Bayes Rodríguez, Cristian Luis
dc.contributor.author.fl_str_mv Lengua Lafosse, Patricia
dc.subject.es_ES.fl_str_mv Estadística bayesiana
Análisis estocástico
Bolsa de Valores
topic Estadística bayesiana
Análisis estocástico
Bolsa de Valores
https://purl.org/pe-repo/ocde/ford#1.01.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.03
description This paper represents empirical studies of stochastic volatility (SV) models for daily stocks returns data of a set of Latin American countries (Argentina, Brazil, Chile, Mexico and Peru) for the sample period 1996:01-2013:12. We estimate SV models incorporating both leverage effects and skewed heavy-tailed disturbances taking into account the GH Skew Student’s t-distribution using the Bayesian estimation method proposed by Nakajima and Omori (2012). A model comparison between the competing SV models with symmetric Student´s t-disturbances is provided using the log marginal likelihoods in the empirical study. A prior sensitivity analysis is also provided. The results suggest that there are leverage effects in all indices considered but there is not enough evidence for Peru, and skewed heavy-tailed disturbances is confirmed only for Argentina, symmetric heavy-tailed disturbances for Mexico, Brazil and Chile, and symmetric Normal disturbances for Peru. Furthermore, we find that the GH Skew Student s t-disturbance distribution in the SV model is successful in describing the distribution of the daily stock return data for Peru, Argentina and Brazil over the traditional symmetric Student´s t-disturbance distribution.
publishDate 2015
dc.date.accessioned.es_ES.fl_str_mv 2015-07-17T15:34:04Z
dc.date.available.es_ES.fl_str_mv 2015-07-17T15:34:04Z
dc.date.created.es_ES.fl_str_mv 2015
dc.date.issued.fl_str_mv 2015-07-17
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/6167
url http://hdl.handle.net/20.500.12404/6167
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638508391235584
score 13.887878
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).