Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods

Descripción del Articulo

The minimum variance (MV) beamformer is an adaptive beamforming method that has the potential to enhance the resolution and contrast of ultrasound images. Although the sensitivity of the MV beamformer to steering vector errors and array calibration errors is well-documented in other fields, in ultra...

Descripción completa

Detalles Bibliográficos
Autor: Chau Loo Kung, Gustavo Ramón
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146512
Enlace del recurso:http://hdl.handle.net/20.500.12404/8498
Nivel de acceso:acceso abierto
Materia:Procesamiento de imágenes digitales
Procesamiento de señales biomédicas
Ultrasonido en medicina
Diagnóstico por imágenes
https://purl.org/pe-repo/ocde/ford#2.02.05
id RPUC_52a5498c145eb4a5ede16df156fe9791
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146512
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Lavarello Montero, Roberto JannielDahl, Jeremy J.Chau Loo Kung, Gustavo Ramón2017-04-28T01:19:54Z2017-04-28T01:19:54Z20172017-04-28http://hdl.handle.net/20.500.12404/8498The minimum variance (MV) beamformer is an adaptive beamforming method that has the potential to enhance the resolution and contrast of ultrasound images. Although the sensitivity of the MV beamformer to steering vector errors and array calibration errors is well-documented in other fields, in ultrasound it has been tested only under gross sound speed errors. Several robust MV beamformers have been proposed, but have mainly reported robustness only in the presence of sound speed mismatches. Additionally the impact of PAC methods in mitigating the effects of phase aberration in MV beamformed images has not been observed Accordingly, this thesis report consists on two parts. On the first part, a more complete analysis of the effects of different types of aberrators on conventional MV beamforming and on a robust MV beamformer from the literature (Eigenspace-based Minimum Variance (ESMV) beamformer) is carried out, and the effects of three PAC algorithms and their impact on the performance of the MV beamformer are analyzed (MV-PC). The comparison is carried out on Field II simulations and phantom experiments with electronic aberration and tissue aberrators. We conclude that the sensitivity to speed of sound errors and aberration limit the use of the MV beamformer in clinical applications, and that the effect of aberration is stronger than previously reported in the literature. Additionally it is shown that under moderate and strong aberrating conditions, MV-PC is a preferable option to ESMV. On the second part, we propose a new, locally-adaptive, phase aberration correction method (LAPAC) able to improve both DAS and MV beamformers that integrates aberration correction for each point in the image domain into the formulation of the MV beamformer. The new method is tested using fullwave simulations of models of human abdominal wall, experiments with tissue aberrators, and in vivo carotid images. The LAPAC method is compared with conventional phase aberration correction with delay-and-sum beamforming (DAS-PC) and MV-PC. The proposed method showed between 1-4 dB higher contrast than DAS-PC and MV-PC in all cases, and LAPAC-MV showed better performance than LAPAC-DAS. We conclude that LAPAC may be a viable option to enhance ultrasound image quality of both DAS and MV in the presence of clinically-relevant aberrating conditions.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Procesamiento de imágenes digitalesProcesamiento de señales biomédicasUltrasonido en medicinaDiagnóstico por imágeneshttps://purl.org/pe-repo/ocde/ford#2.02.05Robust Minimmun Variance Beamformer using Phase Aberration Correction Methodsinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales10544227613077https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146512oai:repositorio.pucp.edu.pe:20.500.14657/1465122024-06-10 10:55:22.817http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods
title Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods
spellingShingle Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods
Chau Loo Kung, Gustavo Ramón
Procesamiento de imágenes digitales
Procesamiento de señales biomédicas
Ultrasonido en medicina
Diagnóstico por imágenes
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods
title_full Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods
title_fullStr Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods
title_full_unstemmed Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods
title_sort Robust Minimmun Variance Beamformer using Phase Aberration Correction Methods
author Chau Loo Kung, Gustavo Ramón
author_facet Chau Loo Kung, Gustavo Ramón
author_role author
dc.contributor.advisor.fl_str_mv Lavarello Montero, Roberto Janniel
Dahl, Jeremy J.
dc.contributor.author.fl_str_mv Chau Loo Kung, Gustavo Ramón
dc.subject.es_ES.fl_str_mv Procesamiento de imágenes digitales
Procesamiento de señales biomédicas
Ultrasonido en medicina
Diagnóstico por imágenes
topic Procesamiento de imágenes digitales
Procesamiento de señales biomédicas
Ultrasonido en medicina
Diagnóstico por imágenes
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description The minimum variance (MV) beamformer is an adaptive beamforming method that has the potential to enhance the resolution and contrast of ultrasound images. Although the sensitivity of the MV beamformer to steering vector errors and array calibration errors is well-documented in other fields, in ultrasound it has been tested only under gross sound speed errors. Several robust MV beamformers have been proposed, but have mainly reported robustness only in the presence of sound speed mismatches. Additionally the impact of PAC methods in mitigating the effects of phase aberration in MV beamformed images has not been observed Accordingly, this thesis report consists on two parts. On the first part, a more complete analysis of the effects of different types of aberrators on conventional MV beamforming and on a robust MV beamformer from the literature (Eigenspace-based Minimum Variance (ESMV) beamformer) is carried out, and the effects of three PAC algorithms and their impact on the performance of the MV beamformer are analyzed (MV-PC). The comparison is carried out on Field II simulations and phantom experiments with electronic aberration and tissue aberrators. We conclude that the sensitivity to speed of sound errors and aberration limit the use of the MV beamformer in clinical applications, and that the effect of aberration is stronger than previously reported in the literature. Additionally it is shown that under moderate and strong aberrating conditions, MV-PC is a preferable option to ESMV. On the second part, we propose a new, locally-adaptive, phase aberration correction method (LAPAC) able to improve both DAS and MV beamformers that integrates aberration correction for each point in the image domain into the formulation of the MV beamformer. The new method is tested using fullwave simulations of models of human abdominal wall, experiments with tissue aberrators, and in vivo carotid images. The LAPAC method is compared with conventional phase aberration correction with delay-and-sum beamforming (DAS-PC) and MV-PC. The proposed method showed between 1-4 dB higher contrast than DAS-PC and MV-PC in all cases, and LAPAC-MV showed better performance than LAPAC-DAS. We conclude that LAPAC may be a viable option to enhance ultrasound image quality of both DAS and MV in the presence of clinically-relevant aberrating conditions.
publishDate 2017
dc.date.accessioned.es_ES.fl_str_mv 2017-04-28T01:19:54Z
dc.date.available.es_ES.fl_str_mv 2017-04-28T01:19:54Z
dc.date.created.es_ES.fl_str_mv 2017
dc.date.issued.fl_str_mv 2017-04-28
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/8498
url http://hdl.handle.net/20.500.12404/8498
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639132578119680
score 13.888049
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).