El control de gestión se encuentra con la IA: De la revisión de literatura basada en datos a la identificación de vacíos de investigación

Descripción del Articulo

The integration of artificial intelligence (AI) into academic research constitutes a highimpact instrument for managing scientific knowledge. Building on these capabilities, this paper presents a datadriven literature review that explores the intersection of management control systems (MCS) and AI,...

Descripción completa

Detalles Bibliográficos
Autores: Alonso, Omar Feria, Shakina, Elena, Gonzalez-Sanchez, Maria Beatriz, Berbel-Vera, Jose
Formato: artículo
Fecha de Publicación:2025
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/205112
Enlace del recurso:https://revistas.pucp.edu.pe/index.php/contabilidadyNegocios/article/view/31684/27911
http://hdl.handle.net/20.500.14657/205112
https://doi.org/10.18800/contabilidad.2025ESP.004
Nivel de acceso:acceso abierto
Materia:Literature Review
Management control
Artificial intelligence.
Revisión de la literatura
Control de gestión
Inteligencia artificial explicable
Revisão de literatura
Controle gerencial
Inteligência artificial explicável
https://purl.org/pe-repo/ocde/ford#5.02.04
Descripción
Sumario:The integration of artificial intelligence (AI) into academic research constitutes a highimpact instrument for managing scientific knowledge. Building on these capabilities, this paper presents a datadriven literature review that explores the intersection of management control systems (MCS) and AI, maps key thematic clusters, and identifies research gaps. Drawing on curated corpus of peer-reviewed articles published between 2010 and 2025, we identify five major thematic clusters and assess the extent to which each addresses transparency and explainability, core concerns in implementing AI within MCS contexts. Our findings reveal that only two clusters explicitly engage with explainable AI (XAI), revealing a significant research gap. This study offers a twofold contribution: it provides a systematic mapping of current research on AI-enabled control systems and proposes a research agenda that emphasizes the need for a more integrated and transparent approach to explainability in AI-driven decision-making contexts. The study further demonstrates the capacity of datadriven techniques to steer future inquiry, while simultaneously underscoring the indispensable role of critical reading and human judgment in the application of AI methods to scholarly research.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).