Prediction of motion trajectories based on motor imagery by a brain computer interface

Descripción del Articulo

The aim of this Master's Thesis was to develop a naturally controllable BCI that can predict motion trajectories from the imagination of motor execution. The approach to reach this aim was to nd a correlation between movement and brain data, which can subsequently be used for the prediction of...

Descripción completa

Detalles Bibliográficos
Autor: Petersamer, Matthias
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146072
Enlace del recurso:http://hdl.handle.net/20.500.12404/11605
Nivel de acceso:acceso abierto
Materia:Interfaces cerebro-computadora
Interfaces de computadora--Control
https://purl.org/pe-repo/ocde/ford#2.00.00
id RPUC_2c4e1eb484ce7d474329f79183a22319
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146072
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Haueisen, J.Petersamer, Matthias2018-03-20T19:48:57Z2018-03-20T19:48:57Z20172018-03-20http://hdl.handle.net/20.500.12404/11605The aim of this Master's Thesis was to develop a naturally controllable BCI that can predict motion trajectories from the imagination of motor execution. The approach to reach this aim was to nd a correlation between movement and brain data, which can subsequently be used for the prediction of movement trajectories only by brain signals. To nd this correlation, an experiment was carried out, in which a participant had to do triggered movements with its right arm to four di erent targets. During the execution of the movements, the kinematic and EEG data of the participant were recorded. After a preprocessing stage, the velocity of the kinematic data in x and y directions, and the band power of the EEG data in di erent frequency ranges were calculated and used as features for the calculation of the correlation by a multiple linear regression. When applying the resulting regression parameter to predict trajectories from EEG signals, the best accuracies were shown in the mu and low beta frequency range, as expected. However, the accuracies were not as high as necessary for control of an application.El objetivo de esta Tesis de Maestría fue desarrollar un interfaz cerebro computador controlable naturalmente que pueda predecir trayectorias de movimiento imaginadas. El enfoque para alcanzar este objetivo fue encontrar una correlación entre el movimiento y los datos cerebrales que puedan ser utilizados posteriormente para la predicción de las trayectorias de movimiento sólo por medio de señales cerebrales. Para encontrar esta correlación, se realizó un experimento, en cual un participante tuvo que realizar movimientos desencadenados con su brazo derecho a cuatro puntos diferentes. Durante el examen de los movimientos, se registraron los datos cinemáticos y de EEG del participante. Después de una etapa de pre-procesamiento, se calcularon las velocidades en las direcciones x y y, de los datos cinemáticos, y la potencia de la banda, de los datos EEG en diferentes rangos de frecuencia, y se utilizaron como características para el cálculo de la correlación mediante con una regresión lineal múltiple. Al aplicar el parámetro de regresión resultante para predecir trayectorias a partir de señales de EEG, las mejores precisiones estuvieron en el rango de frecuencia mu e inferior en beta, como se esperaba. Sin embargo, los resultados no fueron suficientemente precisos como para usarlas para el control de una aplicación.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Interfaces cerebro-computadoraInterfaces de computadora--Controlhttps://purl.org/pe-repo/ocde/ford#2.00.00Prediction of motion trajectories based on motor imagery by a brain computer interfaceinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería MecatrónicaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería Mecatrónica713167https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146072oai:repositorio.pucp.edu.pe:20.500.14657/1460722024-06-10 10:29:13.765http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Prediction of motion trajectories based on motor imagery by a brain computer interface
title Prediction of motion trajectories based on motor imagery by a brain computer interface
spellingShingle Prediction of motion trajectories based on motor imagery by a brain computer interface
Petersamer, Matthias
Interfaces cerebro-computadora
Interfaces de computadora--Control
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Prediction of motion trajectories based on motor imagery by a brain computer interface
title_full Prediction of motion trajectories based on motor imagery by a brain computer interface
title_fullStr Prediction of motion trajectories based on motor imagery by a brain computer interface
title_full_unstemmed Prediction of motion trajectories based on motor imagery by a brain computer interface
title_sort Prediction of motion trajectories based on motor imagery by a brain computer interface
author Petersamer, Matthias
author_facet Petersamer, Matthias
author_role author
dc.contributor.advisor.fl_str_mv Haueisen, J.
dc.contributor.author.fl_str_mv Petersamer, Matthias
dc.subject.es_ES.fl_str_mv Interfaces cerebro-computadora
Interfaces de computadora--Control
topic Interfaces cerebro-computadora
Interfaces de computadora--Control
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description The aim of this Master's Thesis was to develop a naturally controllable BCI that can predict motion trajectories from the imagination of motor execution. The approach to reach this aim was to nd a correlation between movement and brain data, which can subsequently be used for the prediction of movement trajectories only by brain signals. To nd this correlation, an experiment was carried out, in which a participant had to do triggered movements with its right arm to four di erent targets. During the execution of the movements, the kinematic and EEG data of the participant were recorded. After a preprocessing stage, the velocity of the kinematic data in x and y directions, and the band power of the EEG data in di erent frequency ranges were calculated and used as features for the calculation of the correlation by a multiple linear regression. When applying the resulting regression parameter to predict trajectories from EEG signals, the best accuracies were shown in the mu and low beta frequency range, as expected. However, the accuracies were not as high as necessary for control of an application.
publishDate 2017
dc.date.created.es_ES.fl_str_mv 2017
dc.date.accessioned.es_ES.fl_str_mv 2018-03-20T19:48:57Z
dc.date.available.es_ES.fl_str_mv 2018-03-20T19:48:57Z
dc.date.issued.fl_str_mv 2018-03-20
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/11605
url http://hdl.handle.net/20.500.12404/11605
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638699568660480
score 13.871978
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).