Prediction of motion trajectories based on motor imagery by a brain computer interface
Descripción del Articulo
The aim of this Master's Thesis was to develop a naturally controllable BCI that can predict motion trajectories from the imagination of motor execution. The approach to reach this aim was to nd a correlation between movement and brain data, which can subsequently be used for the prediction of...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2017 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/146072 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/11605 |
Nivel de acceso: | acceso abierto |
Materia: | Interfaces cerebro-computadora Interfaces de computadora--Control https://purl.org/pe-repo/ocde/ford#2.00.00 |
id |
RPUC_2c4e1eb484ce7d474329f79183a22319 |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/146072 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Haueisen, J.Petersamer, Matthias2018-03-20T19:48:57Z2018-03-20T19:48:57Z20172018-03-20http://hdl.handle.net/20.500.12404/11605The aim of this Master's Thesis was to develop a naturally controllable BCI that can predict motion trajectories from the imagination of motor execution. The approach to reach this aim was to nd a correlation between movement and brain data, which can subsequently be used for the prediction of movement trajectories only by brain signals. To nd this correlation, an experiment was carried out, in which a participant had to do triggered movements with its right arm to four di erent targets. During the execution of the movements, the kinematic and EEG data of the participant were recorded. After a preprocessing stage, the velocity of the kinematic data in x and y directions, and the band power of the EEG data in di erent frequency ranges were calculated and used as features for the calculation of the correlation by a multiple linear regression. When applying the resulting regression parameter to predict trajectories from EEG signals, the best accuracies were shown in the mu and low beta frequency range, as expected. However, the accuracies were not as high as necessary for control of an application.El objetivo de esta Tesis de Maestría fue desarrollar un interfaz cerebro computador controlable naturalmente que pueda predecir trayectorias de movimiento imaginadas. El enfoque para alcanzar este objetivo fue encontrar una correlación entre el movimiento y los datos cerebrales que puedan ser utilizados posteriormente para la predicción de las trayectorias de movimiento sólo por medio de señales cerebrales. Para encontrar esta correlación, se realizó un experimento, en cual un participante tuvo que realizar movimientos desencadenados con su brazo derecho a cuatro puntos diferentes. Durante el examen de los movimientos, se registraron los datos cinemáticos y de EEG del participante. Después de una etapa de pre-procesamiento, se calcularon las velocidades en las direcciones x y y, de los datos cinemáticos, y la potencia de la banda, de los datos EEG en diferentes rangos de frecuencia, y se utilizaron como características para el cálculo de la correlación mediante con una regresión lineal múltiple. Al aplicar el parámetro de regresión resultante para predecir trayectorias a partir de señales de EEG, las mejores precisiones estuvieron en el rango de frecuencia mu e inferior en beta, como se esperaba. Sin embargo, los resultados no fueron suficientemente precisos como para usarlas para el control de una aplicación.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Interfaces cerebro-computadoraInterfaces de computadora--Controlhttps://purl.org/pe-repo/ocde/ford#2.00.00Prediction of motion trajectories based on motor imagery by a brain computer interfaceinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería MecatrónicaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería Mecatrónica713167https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146072oai:repositorio.pucp.edu.pe:20.500.14657/1460722024-06-10 10:29:13.765http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.es_ES.fl_str_mv |
Prediction of motion trajectories based on motor imagery by a brain computer interface |
title |
Prediction of motion trajectories based on motor imagery by a brain computer interface |
spellingShingle |
Prediction of motion trajectories based on motor imagery by a brain computer interface Petersamer, Matthias Interfaces cerebro-computadora Interfaces de computadora--Control https://purl.org/pe-repo/ocde/ford#2.00.00 |
title_short |
Prediction of motion trajectories based on motor imagery by a brain computer interface |
title_full |
Prediction of motion trajectories based on motor imagery by a brain computer interface |
title_fullStr |
Prediction of motion trajectories based on motor imagery by a brain computer interface |
title_full_unstemmed |
Prediction of motion trajectories based on motor imagery by a brain computer interface |
title_sort |
Prediction of motion trajectories based on motor imagery by a brain computer interface |
author |
Petersamer, Matthias |
author_facet |
Petersamer, Matthias |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Haueisen, J. |
dc.contributor.author.fl_str_mv |
Petersamer, Matthias |
dc.subject.es_ES.fl_str_mv |
Interfaces cerebro-computadora Interfaces de computadora--Control |
topic |
Interfaces cerebro-computadora Interfaces de computadora--Control https://purl.org/pe-repo/ocde/ford#2.00.00 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.00.00 |
description |
The aim of this Master's Thesis was to develop a naturally controllable BCI that can predict motion trajectories from the imagination of motor execution. The approach to reach this aim was to nd a correlation between movement and brain data, which can subsequently be used for the prediction of movement trajectories only by brain signals. To nd this correlation, an experiment was carried out, in which a participant had to do triggered movements with its right arm to four di erent targets. During the execution of the movements, the kinematic and EEG data of the participant were recorded. After a preprocessing stage, the velocity of the kinematic data in x and y directions, and the band power of the EEG data in di erent frequency ranges were calculated and used as features for the calculation of the correlation by a multiple linear regression. When applying the resulting regression parameter to predict trajectories from EEG signals, the best accuracies were shown in the mu and low beta frequency range, as expected. However, the accuracies were not as high as necessary for control of an application. |
publishDate |
2017 |
dc.date.created.es_ES.fl_str_mv |
2017 |
dc.date.accessioned.es_ES.fl_str_mv |
2018-03-20T19:48:57Z |
dc.date.available.es_ES.fl_str_mv |
2018-03-20T19:48:57Z |
dc.date.issued.fl_str_mv |
2018-03-20 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.other.none.fl_str_mv |
Tesis de maestría |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/11605 |
url |
http://hdl.handle.net/20.500.12404/11605 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638699568660480 |
score |
13.871978 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).