Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
Descripción del Articulo
Navigation and obstacle avoidance are important tasks in the research field of au- tonomous mobile robots. The challenge tackled in this work is the navigation of a 4- wheeled car-type robot to a desired parking position while avoiding obstacles on the way. The taken approach to solve this problem i...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2018 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/146026 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/12893 |
| Nivel de acceso: | acceso abierto |
| Materia: | Robots móviles Controladores programables Redes neuronales (Computación) Sistemas difusos https://purl.org/pe-repo/ocde/ford#2.02.03 |
| id |
RPUC_0989534e4f463d7b493df349fc5b87bd |
|---|---|
| oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/146026 |
| network_acronym_str |
RPUC |
| network_name_str |
PUCP-Institucional |
| repository_id_str |
2905 |
| spelling |
Reger, JohannGrebner, Anna-Maria Stephanie2018-10-18T03:08:13Z2018-10-18T03:08:13Z20182018-10-17http://hdl.handle.net/20.500.12404/12893Navigation and obstacle avoidance are important tasks in the research field of au- tonomous mobile robots. The challenge tackled in this work is the navigation of a 4- wheeled car-type robot to a desired parking position while avoiding obstacles on the way. The taken approach to solve this problem is based on neural fuzzy techniques. Earlier works resulted in a controller to navigate the robot in a clear environment. It is extended by considering additional parameters in the training process. The learning method used in this training is dynamic backpropagation. For the obstacle avoidance problem an additional neuro-fuzzy controller is set up and trained. It influences the results from the navigation controller to avoid collisions with objects blocking the path. The controller is trained with dynamic backpropagation and a reinforcement learning algorithm called deep deterministic policy gradient.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Robots móvilesControladores programablesRedes neuronales (Computación)Sistemas difusoshttps://purl.org/pe-repo/ocde/ford#2.02.03Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networksinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización712037https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146026oai:repositorio.pucp.edu.pe:20.500.14657/1460262024-06-10 10:54:37.057http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
| dc.title.es_ES.fl_str_mv |
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks |
| title |
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks |
| spellingShingle |
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks Grebner, Anna-Maria Stephanie Robots móviles Controladores programables Redes neuronales (Computación) Sistemas difusos https://purl.org/pe-repo/ocde/ford#2.02.03 |
| title_short |
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks |
| title_full |
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks |
| title_fullStr |
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks |
| title_full_unstemmed |
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks |
| title_sort |
Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks |
| author |
Grebner, Anna-Maria Stephanie |
| author_facet |
Grebner, Anna-Maria Stephanie |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Reger, Johann |
| dc.contributor.author.fl_str_mv |
Grebner, Anna-Maria Stephanie |
| dc.subject.es_ES.fl_str_mv |
Robots móviles Controladores programables Redes neuronales (Computación) Sistemas difusos |
| topic |
Robots móviles Controladores programables Redes neuronales (Computación) Sistemas difusos https://purl.org/pe-repo/ocde/ford#2.02.03 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
| description |
Navigation and obstacle avoidance are important tasks in the research field of au- tonomous mobile robots. The challenge tackled in this work is the navigation of a 4- wheeled car-type robot to a desired parking position while avoiding obstacles on the way. The taken approach to solve this problem is based on neural fuzzy techniques. Earlier works resulted in a controller to navigate the robot in a clear environment. It is extended by considering additional parameters in the training process. The learning method used in this training is dynamic backpropagation. For the obstacle avoidance problem an additional neuro-fuzzy controller is set up and trained. It influences the results from the navigation controller to avoid collisions with objects blocking the path. The controller is trained with dynamic backpropagation and a reinforcement learning algorithm called deep deterministic policy gradient. |
| publishDate |
2018 |
| dc.date.accessioned.es_ES.fl_str_mv |
2018-10-18T03:08:13Z |
| dc.date.available.es_ES.fl_str_mv |
2018-10-18T03:08:13Z |
| dc.date.created.es_ES.fl_str_mv |
2018 |
| dc.date.issued.fl_str_mv |
2018-10-17 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.other.none.fl_str_mv |
Tesis de maestría |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/12893 |
| url |
http://hdl.handle.net/20.500.12404/12893 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Institucional |
| collection |
PUCP-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
| repository.mail.fl_str_mv |
repositorio@pucp.pe |
| _version_ |
1835639826391498752 |
| score |
13.968557 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).