Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks

Descripción del Articulo

Navigation and obstacle avoidance are important tasks in the research field of au- tonomous mobile robots. The challenge tackled in this work is the navigation of a 4- wheeled car-type robot to a desired parking position while avoiding obstacles on the way. The taken approach to solve this problem i...

Descripción completa

Detalles Bibliográficos
Autor: Grebner, Anna-Maria Stephanie
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146026
Enlace del recurso:http://hdl.handle.net/20.500.12404/12893
Nivel de acceso:acceso abierto
Materia:Robots móviles
Controladores programables
Redes neuronales (Computación)
Sistemas difusos
https://purl.org/pe-repo/ocde/ford#2.02.03
id RPUC_0989534e4f463d7b493df349fc5b87bd
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146026
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Reger, JohannGrebner, Anna-Maria Stephanie2018-10-18T03:08:13Z2018-10-18T03:08:13Z20182018-10-17http://hdl.handle.net/20.500.12404/12893Navigation and obstacle avoidance are important tasks in the research field of au- tonomous mobile robots. The challenge tackled in this work is the navigation of a 4- wheeled car-type robot to a desired parking position while avoiding obstacles on the way. The taken approach to solve this problem is based on neural fuzzy techniques. Earlier works resulted in a controller to navigate the robot in a clear environment. It is extended by considering additional parameters in the training process. The learning method used in this training is dynamic backpropagation. For the obstacle avoidance problem an additional neuro-fuzzy controller is set up and trained. It influences the results from the navigation controller to avoid collisions with objects blocking the path. The controller is trained with dynamic backpropagation and a reinforcement learning algorithm called deep deterministic policy gradient.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Robots móvilesControladores programablesRedes neuronales (Computación)Sistemas difusoshttps://purl.org/pe-repo/ocde/ford#2.02.03Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networksinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización712037https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146026oai:repositorio.pucp.edu.pe:20.500.14657/1460262024-06-10 10:54:37.057http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
title Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
spellingShingle Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
Grebner, Anna-Maria Stephanie
Robots móviles
Controladores programables
Redes neuronales (Computación)
Sistemas difusos
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
title_full Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
title_fullStr Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
title_full_unstemmed Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
title_sort Autonomous obstacle avoidance and positioning control of mobile robots using fuzzy neural networks
author Grebner, Anna-Maria Stephanie
author_facet Grebner, Anna-Maria Stephanie
author_role author
dc.contributor.advisor.fl_str_mv Reger, Johann
dc.contributor.author.fl_str_mv Grebner, Anna-Maria Stephanie
dc.subject.es_ES.fl_str_mv Robots móviles
Controladores programables
Redes neuronales (Computación)
Sistemas difusos
topic Robots móviles
Controladores programables
Redes neuronales (Computación)
Sistemas difusos
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description Navigation and obstacle avoidance are important tasks in the research field of au- tonomous mobile robots. The challenge tackled in this work is the navigation of a 4- wheeled car-type robot to a desired parking position while avoiding obstacles on the way. The taken approach to solve this problem is based on neural fuzzy techniques. Earlier works resulted in a controller to navigate the robot in a clear environment. It is extended by considering additional parameters in the training process. The learning method used in this training is dynamic backpropagation. For the obstacle avoidance problem an additional neuro-fuzzy controller is set up and trained. It influences the results from the navigation controller to avoid collisions with objects blocking the path. The controller is trained with dynamic backpropagation and a reinforcement learning algorithm called deep deterministic policy gradient.
publishDate 2018
dc.date.accessioned.es_ES.fl_str_mv 2018-10-18T03:08:13Z
dc.date.available.es_ES.fl_str_mv 2018-10-18T03:08:13Z
dc.date.created.es_ES.fl_str_mv 2018
dc.date.issued.fl_str_mv 2018-10-17
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/12893
url http://hdl.handle.net/20.500.12404/12893
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639826391498752
score 13.968557
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).