Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015
Descripción del Articulo
La presente investigación se realizó en la Facultad de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano de Puno, la cual tuvo como objetivo determinar la mejor técnica de predicción en el rendimiento académico utilizando regresión y redes neuronales en estudiantes de la...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2017 |
Institución: | Universidad Nacional Del Altiplano |
Repositorio: | UNAP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:https://repositorio.unap.edu.pe:20.500.14082/6337 |
Enlace del recurso: | http://repositorio.unap.edu.pe/handle/20.500.14082/6337 |
Nivel de acceso: | acceso abierto |
Materia: | Estadística Modelos predictivos uni y multivariables |
id |
RNAP_eb88bce87de04436dd82fe3c533fec82 |
---|---|
oai_identifier_str |
oai:https://repositorio.unap.edu.pe:20.500.14082/6337 |
network_acronym_str |
RNAP |
network_name_str |
UNAP-Institucional |
repository_id_str |
9382 |
dc.title.es_PE.fl_str_mv |
Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015 |
title |
Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015 |
spellingShingle |
Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015 Paja Dominguez, Hicler_Emerson Estadística Modelos predictivos uni y multivariables |
title_short |
Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015 |
title_full |
Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015 |
title_fullStr |
Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015 |
title_full_unstemmed |
Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015 |
title_sort |
Predicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015 |
author |
Paja Dominguez, Hicler_Emerson |
author_facet |
Paja Dominguez, Hicler_Emerson |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Sucari Leon, Reynaldo |
dc.contributor.author.fl_str_mv |
Paja Dominguez, Hicler_Emerson |
dc.subject.es_PE.fl_str_mv |
Estadística Modelos predictivos uni y multivariables |
topic |
Estadística Modelos predictivos uni y multivariables |
description |
La presente investigación se realizó en la Facultad de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano de Puno, la cual tuvo como objetivo determinar la mejor técnica de predicción en el rendimiento académico utilizando regresión y redes neuronales en estudiantes de la Facultad mencionada. Para ello se utilizó una población que estuvo conformada por estudiantes matriculados durante los años 2009 al 2015; haciendo un total de 696 estudiantes. Se consideró muestreo intencional de cohorte entre los años 2009-2015, conteniendo 19334 registros de promedios finales de asignaturas. Se consideró 23 variables predictoras; de ellas 17 variables fueron seleccionados por el método stepwise para la asignatura 009-05 con un R^2= 0.72, 0.11 de error para los modelos, 0.37 de error para la predicción y 16 variables para la asignatura 010-05 con de R^2= 0.92, 0.96 de error para los modelos, 0.0032 de error para la predicción. Mientras que las RNA’s Perceptrón multicapa, algoritmo backpropagation, con arquitectura de 3 capas en función de las mismas variables que fueron seleccionadas en regresión múltiple; en donde de ambos asignaturas mencionadas anteriormente obtuvieron promedios de 0.0558 de error para los modelos y 0.00081 de error para las predicciones. Finalmente se midieron los promedios los errores obteniendo que las RNA’s es la mejor técnica en predicción; puesto que tienen una diferencia de 0.534 error en modelo y 0.1307 error en predicción respecto a la regresión. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-03-20T18:03:54Z |
dc.date.available.none.fl_str_mv |
2018-03-20T18:03:54Z |
dc.date.issued.fl_str_mv |
2017-09-18 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.unap.edu.pe/handle/20.500.14082/6337 |
url |
http://repositorio.unap.edu.pe/handle/20.500.14082/6337 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Nacional del Altiplano. Repositorio Institucional - UNAP |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Universidad Nacional del Altiplano Repositorio Institucional - UNAP |
dc.source.none.fl_str_mv |
reponame:UNAP-Institucional instname:Universidad Nacional Del Altiplano instacron:UNAP |
instname_str |
Universidad Nacional Del Altiplano |
instacron_str |
UNAP |
institution |
UNAP |
reponame_str |
UNAP-Institucional |
collection |
UNAP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.unap.edu.pe/bitstream/20.500.14082/6337/2/license.txt https://repositorio.unap.edu.pe/bitstream/20.500.14082/6337/3/Paja_Dominguez_Hicler_Emerson.pdf.txt https://repositorio.unap.edu.pe/bitstream/20.500.14082/6337/1/Paja_Dominguez_Hicler_Emerson.pdf |
bitstream.checksum.fl_str_mv |
c52066b9c50a8f86be96c82978636682 bafbcb60976ab5ceee2bf17b7b535a0c b86b27e08799444bc74da9e1d625956f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional de la Universidad Nacional del Altiplano |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1819880878094942208 |
spelling |
Sucari Leon, ReynaldoPaja Dominguez, Hicler_Emerson2018-03-20T18:03:54Z2018-03-20T18:03:54Z2017-09-18http://repositorio.unap.edu.pe/handle/20.500.14082/6337La presente investigación se realizó en la Facultad de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano de Puno, la cual tuvo como objetivo determinar la mejor técnica de predicción en el rendimiento académico utilizando regresión y redes neuronales en estudiantes de la Facultad mencionada. Para ello se utilizó una población que estuvo conformada por estudiantes matriculados durante los años 2009 al 2015; haciendo un total de 696 estudiantes. Se consideró muestreo intencional de cohorte entre los años 2009-2015, conteniendo 19334 registros de promedios finales de asignaturas. Se consideró 23 variables predictoras; de ellas 17 variables fueron seleccionados por el método stepwise para la asignatura 009-05 con un R^2= 0.72, 0.11 de error para los modelos, 0.37 de error para la predicción y 16 variables para la asignatura 010-05 con de R^2= 0.92, 0.96 de error para los modelos, 0.0032 de error para la predicción. Mientras que las RNA’s Perceptrón multicapa, algoritmo backpropagation, con arquitectura de 3 capas en función de las mismas variables que fueron seleccionadas en regresión múltiple; en donde de ambos asignaturas mencionadas anteriormente obtuvieron promedios de 0.0558 de error para los modelos y 0.00081 de error para las predicciones. Finalmente se midieron los promedios los errores obteniendo que las RNA’s es la mejor técnica en predicción; puesto que tienen una diferencia de 0.534 error en modelo y 0.1307 error en predicción respecto a la regresión.Tesisapplication/pdfspaUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esUniversidad Nacional del AltiplanoRepositorio Institucional - UNAPreponame:UNAP-Institucionalinstname:Universidad Nacional Del Altiplanoinstacron:UNAPEstadísticaModelos predictivos uni y multivariablesPredicción de rendimiento académico mediante regresión y redes neuronales en los estudiantes de la Escuela Profesional de Ingeniería Estadística e Informática de la Universidad Nacional del Altiplano - Puno, 2015info:eu-repo/semantics/bachelorThesisSUNEDUIngeniero Estadístico e InformáticoIngeniería Estadística e InformáticaUniversidad Nacional del Altiplano. Facultad de Ingeniería Estadística e InformáticaTítulo Profesional542066LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unap.edu.pe/bitstream/20.500.14082/6337/2/license.txtc52066b9c50a8f86be96c82978636682MD52TEXTPaja_Dominguez_Hicler_Emerson.pdf.txtPaja_Dominguez_Hicler_Emerson.pdf.txtExtracted texttext/plain214185https://repositorio.unap.edu.pe/bitstream/20.500.14082/6337/3/Paja_Dominguez_Hicler_Emerson.pdf.txtbafbcb60976ab5ceee2bf17b7b535a0cMD53ORIGINALPaja_Dominguez_Hicler_Emerson.pdfPaja_Dominguez_Hicler_Emerson.pdfapplication/pdf3681114https://repositorio.unap.edu.pe/bitstream/20.500.14082/6337/1/Paja_Dominguez_Hicler_Emerson.pdfb86b27e08799444bc74da9e1d625956fMD5120.500.14082/6337oai:https://repositorio.unap.edu.pe:20.500.14082/63372024-03-04 15:17:17.017Repositorio institucional de la Universidad Nacional del Altiplanodspace-help@myu.edu77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg== |
score |
13.887938 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).