Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin

Descripción del Articulo

Hoy en día el Bitcoin es la criptodivisa con mayor capitalización de mercado y una nueva opción de inversión bastante llamativa pero riesgosa debido a la incertidumbre generada por la alta volatilidad de la misma lo que dificulta predecir su comportamiento, es por ello que se implementó un modelo pr...

Descripción completa

Detalles Bibliográficos
Autor: Chura Flores, Ernesto Zhildeer
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:español
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/19268
Enlace del recurso:https://repositorio.unap.edu.pe/handle/20.500.14082/19268
Nivel de acceso:acceso abierto
Materia:Análisis de sentimientos
Twitter
Bitcoin
Predicción
Comportamiento
LSTM
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#1.02.01
id RNAP_d3d27c9963f55a1121015d2078402ac4
oai_identifier_str oai:https://repositorio.unap.edu.pe:20.500.14082/19268
network_acronym_str RNAP
network_name_str UNAP-Institucional
repository_id_str 9382
dc.title.es_PE.fl_str_mv Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin
title Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin
spellingShingle Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin
Chura Flores, Ernesto Zhildeer
Análisis de sentimientos
Twitter
Bitcoin
Predicción
Comportamiento
LSTM
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin
title_full Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin
title_fullStr Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin
title_full_unstemmed Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin
title_sort Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoin
author Chura Flores, Ernesto Zhildeer
author_facet Chura Flores, Ernesto Zhildeer
author_role author
dc.contributor.advisor.fl_str_mv Condori Alejo, Henry Ivan
dc.contributor.author.fl_str_mv Chura Flores, Ernesto Zhildeer
dc.subject.es_PE.fl_str_mv Análisis de sentimientos
Twitter
Bitcoin
Predicción
Comportamiento
LSTM
Aprendizaje automático
topic Análisis de sentimientos
Twitter
Bitcoin
Predicción
Comportamiento
LSTM
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Hoy en día el Bitcoin es la criptodivisa con mayor capitalización de mercado y una nueva opción de inversión bastante llamativa pero riesgosa debido a la incertidumbre generada por la alta volatilidad de la misma lo que dificulta predecir su comportamiento, es por ello que se implementó un modelo predictivo considerando variables de alcance y aplicando el análisis de sentimientos en Twitter para predecir el comportamiento de esta criptodivisa a corto plazo. Para lograr este objetivo, se realizó la recolección y el preprocesamiento de la data histórica del Bitcoin y de los tweets referentes al Bitcoin y se aplicó el análisis de sentimientos utilizando el clasificador VADER al cual se le agregó un diccionario de léxicos con expresiones comúnmente usadas en la comunidad Bitcoin, después se realizó una selección de las variables más representativas utilizando el índice de correlación de Spearman y posteriormente, se aplicó una red neuronal recurrente (RNN) del tipo LSTM (Long Short-Term Memory) con tres configuraciones diferentes para predecir 1 hora, 6 horas y 12 horas a futuro considerando un lookback de 3 horas utilizando la librería Keras. Para evaluar el performance del modelo se utilizaron las métricas: MAPE y RMSE para obtener valores comparables en términos porcentuales y validación interna del error del modelo respectivamente. Finalmente, se encontró que el modelo predictivo configurado para predecir 1 hr. a futuro fue el que mejores resultados obtuvo con un RMSE de 227.413 y un MAPE de 0.022 lo que demuestra que si es posible predecir el comportamiento del Bitcoin; sin embargo, la desventaja radica en la precisión ya que el resultado no es lo suficientemente bueno con respecto al RMSE por lo que no se recomienda basar decisiones de inversión únicamente en los resultados de este modelo.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-15T20:49:47Z
dc.date.available.none.fl_str_mv 2022-12-15T20:49:47Z
dc.date.issued.fl_str_mv 2022-12-16
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/acceptedVersion
format bachelorThesis
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unap.edu.pe/handle/20.500.14082/19268
url https://repositorio.unap.edu.pe/handle/20.500.14082/19268
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/deed.es
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/deed.es
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional del Altiplano. Repositorio Institucional - UNAP
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Nacional del Altiplano
Repositorio Institucional - UNAP
dc.source.none.fl_str_mv reponame:UNAP-Institucional
instname:Universidad Nacional Del Altiplano
instacron:UNAP
instname_str Universidad Nacional Del Altiplano
instacron_str UNAP
institution UNAP
reponame_str UNAP-Institucional
collection UNAP-Institucional
bitstream.url.fl_str_mv https://repositorio.unap.edu.pe/bitstream/20.500.14082/19268/1/Chura_Flores_Ernesto_Zhildeer.pdf
https://repositorio.unap.edu.pe/bitstream/20.500.14082/19268/2/license.txt
bitstream.checksum.fl_str_mv 6e1bce2fbc0531a12354083f29abaea1
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio institucional de la Universidad Nacional del Altiplano
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1819880898277933056
spelling Condori Alejo, Henry IvanChura Flores, Ernesto Zhildeer2022-12-15T20:49:47Z2022-12-15T20:49:47Z2022-12-16https://repositorio.unap.edu.pe/handle/20.500.14082/19268Hoy en día el Bitcoin es la criptodivisa con mayor capitalización de mercado y una nueva opción de inversión bastante llamativa pero riesgosa debido a la incertidumbre generada por la alta volatilidad de la misma lo que dificulta predecir su comportamiento, es por ello que se implementó un modelo predictivo considerando variables de alcance y aplicando el análisis de sentimientos en Twitter para predecir el comportamiento de esta criptodivisa a corto plazo. Para lograr este objetivo, se realizó la recolección y el preprocesamiento de la data histórica del Bitcoin y de los tweets referentes al Bitcoin y se aplicó el análisis de sentimientos utilizando el clasificador VADER al cual se le agregó un diccionario de léxicos con expresiones comúnmente usadas en la comunidad Bitcoin, después se realizó una selección de las variables más representativas utilizando el índice de correlación de Spearman y posteriormente, se aplicó una red neuronal recurrente (RNN) del tipo LSTM (Long Short-Term Memory) con tres configuraciones diferentes para predecir 1 hora, 6 horas y 12 horas a futuro considerando un lookback de 3 horas utilizando la librería Keras. Para evaluar el performance del modelo se utilizaron las métricas: MAPE y RMSE para obtener valores comparables en términos porcentuales y validación interna del error del modelo respectivamente. Finalmente, se encontró que el modelo predictivo configurado para predecir 1 hr. a futuro fue el que mejores resultados obtuvo con un RMSE de 227.413 y un MAPE de 0.022 lo que demuestra que si es posible predecir el comportamiento del Bitcoin; sin embargo, la desventaja radica en la precisión ya que el resultado no es lo suficientemente bueno con respecto al RMSE por lo que no se recomienda basar decisiones de inversión únicamente en los resultados de este modelo.application/pdfspaUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esUniversidad Nacional del AltiplanoRepositorio Institucional - UNAPreponame:UNAP-Institucionalinstname:Universidad Nacional Del Altiplanoinstacron:UNAPAnálisis de sentimientosTwitterBitcoinPredicciónComportamientoLSTMAprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#1.02.01Modelo predictivo aplicando análisis de sentimientos en Twitter para determinar el comportamiento de la criptodivisa Bitcoininfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionSUNEDUIngeniero de SistemasIngeniería de SistemasUniversidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemashttps://orcid.org/0000-0002-1219-555X01325355https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/nivel#tituloProfesional612076Sosa Maydana, Carlos BorisHolguin Holguin, EdgarTapia Catacora, Pablo Cesar71508945ORIGINALChura_Flores_Ernesto_Zhildeer.pdfChura_Flores_Ernesto_Zhildeer.pdfapplication/pdf3340575https://repositorio.unap.edu.pe/bitstream/20.500.14082/19268/1/Chura_Flores_Ernesto_Zhildeer.pdf6e1bce2fbc0531a12354083f29abaea1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unap.edu.pe/bitstream/20.500.14082/19268/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.14082/19268oai:https://repositorio.unap.edu.pe:20.500.14082/192682024-03-04 14:13:44.153Repositorio institucional de la Universidad Nacional del Altiplanodspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.814859
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).