Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019

Descripción del Articulo

La morosidad se ha constituido en la principal causa de las dificultades que han sufrido algunos sistemas financieros y ciertas entidades de tamaño considerable. Así, una elevada cartera morosa es un serio problema que compromete tanto la viabilidad de la institución a largo plazo como la del propio...

Descripción completa

Detalles Bibliográficos
Autor: Mamani Choque, Grober
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:español
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/14496
Enlace del recurso:http://repositorio.unap.edu.pe/handle/20.500.14082/14496
Nivel de acceso:acceso abierto
Materia:Morosidad
Riesgo de crédito
Regresión
Modelo logístico
https://purl.org/pe-repo/ocde/ford#1.01.03
id RNAP_749d6985f0ab90eabf19e23203c78528
oai_identifier_str oai:https://repositorio.unap.edu.pe:20.500.14082/14496
network_acronym_str RNAP
network_name_str UNAP-Institucional
repository_id_str 9382
dc.title.es_PE.fl_str_mv Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019
title Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019
spellingShingle Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019
Mamani Choque, Grober
Morosidad
Riesgo de crédito
Regresión
Modelo logístico
https://purl.org/pe-repo/ocde/ford#1.01.03
title_short Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019
title_full Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019
title_fullStr Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019
title_full_unstemmed Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019
title_sort Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019
author Mamani Choque, Grober
author_facet Mamani Choque, Grober
author_role author
dc.contributor.advisor.fl_str_mv Huata Panca, Percy
dc.contributor.author.fl_str_mv Mamani Choque, Grober
dc.subject.es_PE.fl_str_mv Morosidad
Riesgo de crédito
Regresión
Modelo logístico
topic Morosidad
Riesgo de crédito
Regresión
Modelo logístico
https://purl.org/pe-repo/ocde/ford#1.01.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.03
description La morosidad se ha constituido en la principal causa de las dificultades que han sufrido algunos sistemas financieros y ciertas entidades de tamaño considerable. Así, una elevada cartera morosa es un serio problema que compromete tanto la viabilidad de la institución a largo plazo como la del propio sistema. En respuesta a lo mencionado, se estudió el riesgo de morosidad para crediticio en los clientes de la Caja de Ahorro y Crédito “Los Andes” agencia Puno en el periodo 2019, haciendo uso de técnicas estadísticas como son los modelos de regresión logística y la simulación. El objetivo de esta investigación es predecir el riesgo de morosidad para crédito bancario, para lograr el objetivo se estimó un modelo de regresión logístico para la predicción de la probabilidad de no recuperar un crédito a partir de la generación de una Base de Datos mediante simulación con un proceso adecuado de entrenamiento y prueba del modelo usando para ello el programa SPSS 24.0. Los resultados fueron: El modelo de regresión logístico en general es significativo como modelo predictor, y este modelo planteado logra predecir una tasa de clasificación de verdaderos negativos (no morosos pronosticados como no morosos) que fue del 97.2%; mientras que la tasa más relevante en este caso, clasificar correctamente a los clientes morosos (verdaderos positivos) fue de 45%, demostrando gran capacidad predictiva del modelo, el modelo fue contrastado con los datos simulados, la metodología aquí presentada se puede ver como referencia para un trabajo futuro más realista, en tal caso, se debe tener cuidado en validar primero la base de datos mediante el estudio de las distribuciones adecuadas, así como validación final del modelo, o mejor aún, usar una base de datos reales.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-08T15:43:46Z
dc.date.available.none.fl_str_mv 2020-12-08T15:43:46Z
dc.date.issued.fl_str_mv 2020-12-09
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.unap.edu.pe/handle/20.500.14082/14496
url http://repositorio.unap.edu.pe/handle/20.500.14082/14496
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/deed.es
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/deed.es
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Nacional del Altiplano. Repositorio Institucional - UNAP
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Nacional del Altiplano
Repositorio Institucional - UNAP
dc.source.none.fl_str_mv reponame:UNAP-Institucional
instname:Universidad Nacional Del Altiplano
instacron:UNAP
instname_str Universidad Nacional Del Altiplano
instacron_str UNAP
institution UNAP
reponame_str UNAP-Institucional
collection UNAP-Institucional
bitstream.url.fl_str_mv https://repositorio.unap.edu.pe/bitstream/20.500.14082/14496/1/Mamani_Choque_Grober.pdf
https://repositorio.unap.edu.pe/bitstream/20.500.14082/14496/2/license.txt
https://repositorio.unap.edu.pe/bitstream/20.500.14082/14496/3/Mamani_Choque_Grober.pdf.txt
bitstream.checksum.fl_str_mv fb6a772e0ae5c64dde4f1ca0831b67c8
c52066b9c50a8f86be96c82978636682
e723a1764420cb71f8660ff5f2cf6cf1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional de la Universidad Nacional del Altiplano
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1819880784524214272
spelling Huata Panca, PercyMamani Choque, Grober2020-12-08T15:43:46Z2020-12-08T15:43:46Z2020-12-09http://repositorio.unap.edu.pe/handle/20.500.14082/14496La morosidad se ha constituido en la principal causa de las dificultades que han sufrido algunos sistemas financieros y ciertas entidades de tamaño considerable. Así, una elevada cartera morosa es un serio problema que compromete tanto la viabilidad de la institución a largo plazo como la del propio sistema. En respuesta a lo mencionado, se estudió el riesgo de morosidad para crediticio en los clientes de la Caja de Ahorro y Crédito “Los Andes” agencia Puno en el periodo 2019, haciendo uso de técnicas estadísticas como son los modelos de regresión logística y la simulación. El objetivo de esta investigación es predecir el riesgo de morosidad para crédito bancario, para lograr el objetivo se estimó un modelo de regresión logístico para la predicción de la probabilidad de no recuperar un crédito a partir de la generación de una Base de Datos mediante simulación con un proceso adecuado de entrenamiento y prueba del modelo usando para ello el programa SPSS 24.0. Los resultados fueron: El modelo de regresión logístico en general es significativo como modelo predictor, y este modelo planteado logra predecir una tasa de clasificación de verdaderos negativos (no morosos pronosticados como no morosos) que fue del 97.2%; mientras que la tasa más relevante en este caso, clasificar correctamente a los clientes morosos (verdaderos positivos) fue de 45%, demostrando gran capacidad predictiva del modelo, el modelo fue contrastado con los datos simulados, la metodología aquí presentada se puede ver como referencia para un trabajo futuro más realista, en tal caso, se debe tener cuidado en validar primero la base de datos mediante el estudio de las distribuciones adecuadas, así como validación final del modelo, o mejor aún, usar una base de datos reales.Tesisapplication/pdfspaUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esUniversidad Nacional del AltiplanoRepositorio Institucional - UNAPreponame:UNAP-Institucionalinstname:Universidad Nacional Del Altiplanoinstacron:UNAPMorosidadRiesgo de créditoRegresiónModelo logísticohttps://purl.org/pe-repo/ocde/ford#1.01.03Modelo predictivo de riesgo de morosidad para crédito bancario a partir de datos simulados de la Caja Rural de Ahorro y Crédito Los Andes - Puno, 2019info:eu-repo/semantics/bachelorThesisSUNEDUIngeniero Estadístico e InformáticoIngeniería Estadística e InformáticaUniversidad Nacional del Altiplano. Facultad de Ingeniería Estadística e InformáticaTítulo Profesionalhttps://orcid.org/0000-0002-1624-552601321923https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/nivel#tituloProfesional542066Choquejahua Acero, RemoRamos Calcina, AlcidesCabrera Mendoza, Raul Oscar43804450ORIGINALMamani_Choque_Grober.pdfMamani_Choque_Grober.pdfapplication/pdf1262298https://repositorio.unap.edu.pe/bitstream/20.500.14082/14496/1/Mamani_Choque_Grober.pdffb6a772e0ae5c64dde4f1ca0831b67c8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unap.edu.pe/bitstream/20.500.14082/14496/2/license.txtc52066b9c50a8f86be96c82978636682MD52TEXTMamani_Choque_Grober.pdf.txtMamani_Choque_Grober.pdf.txtExtracted texttext/plain115068https://repositorio.unap.edu.pe/bitstream/20.500.14082/14496/3/Mamani_Choque_Grober.pdf.txte723a1764420cb71f8660ff5f2cf6cf1MD5320.500.14082/14496oai:https://repositorio.unap.edu.pe:20.500.14082/144962024-03-04 15:17:14.173Repositorio institucional de la Universidad Nacional del Altiplanodspace-help@myu.edu77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg==
score 13.871978
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).