Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire
Descripción del Articulo
Este trabajo de investigación fue motivado con la idea de presentar una demostración mas detallada y comprensible del teorema de la Categoria de Baire y mostrar sus aplicaciones. Primeramente demostraremos el Teorema de la Categoría de Baire, el cual afirma que el complemento de cualquier unión numer...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2017 |
Institución: | Universidad Nacional Del Altiplano |
Repositorio: | UNAP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:https://repositorio.unap.edu.pe:20.500.14082/6174 |
Enlace del recurso: | http://repositorio.unap.edu.pe/handle/20.500.14082/6174 |
Nivel de acceso: | acceso abierto |
Materia: | Teorema de la categoría de Baire Análisis funcional Matemática pura |
id |
RNAP_6d34b069ab38fc2fdbadebf374e8b769 |
---|---|
oai_identifier_str |
oai:https://repositorio.unap.edu.pe:20.500.14082/6174 |
network_acronym_str |
RNAP |
network_name_str |
UNAP-Institucional |
repository_id_str |
9382 |
dc.title.es_PE.fl_str_mv |
Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire |
title |
Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire |
spellingShingle |
Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire Rivas Mamani, Miguel Angel Teorema de la categoría de Baire Análisis funcional Matemática pura |
title_short |
Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire |
title_full |
Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire |
title_fullStr |
Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire |
title_full_unstemmed |
Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire |
title_sort |
Los resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baire |
author |
Rivas Mamani, Miguel Angel |
author_facet |
Rivas Mamani, Miguel Angel |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Villalta Pacori, Julio Cesar |
dc.contributor.author.fl_str_mv |
Rivas Mamani, Miguel Angel |
dc.subject.es_PE.fl_str_mv |
Teorema de la categoría de Baire Análisis funcional Matemática pura |
topic |
Teorema de la categoría de Baire Análisis funcional Matemática pura |
description |
Este trabajo de investigación fue motivado con la idea de presentar una demostración mas detallada y comprensible del teorema de la Categoria de Baire y mostrar sus aplicaciones. Primeramente demostraremos el Teorema de la Categoría de Baire, el cual afirma que el complemento de cualquier unión numerable de subconjuntos nada densos de un espacio métrico completo X, es denso en X. Este teorema implica, en particular, que un espacio métrico completo no puede ser dado como una unión numerable de conjuntos nada den- sos. En otras palabras, si en un espacio métrico completo es igual a la unión numerable de conjuntos, entonces no todos aquellos conjuntos pueden ser nada densos, esto es, al menos uno de ellos tiene clausura con su interior distinto del vacío. Como una primera aplicación del Teorema de la Categoría de Baire, consideramos el Teorema de Banach- Steinhaus, también llamado el Principio de la Acotación Uniforme por obvias razones. Otra aplicación del Principio de la Acotación Uniforme, por consiguiente una aplicación del Teorema de la Categoría de Baire, es el estudio de la continuidad conjunta de las aplicaciones bilineales. Seguidamente pasamos a considerar el Teorema de la Aplicación Abierta como una consecuencia del Teorema de la Categoría de Baire. Como un corolario del Teorema de la Aplicación Abierta tenemos el Teorema de la Aplicación Inversa, el cual afirma que cualquier aplicación lineal acotada y biyectiva entre espacio de Banach tiene inversa acotada. Finalmente, probamos el Teorema del Gráfico Cerrado como una consecuencia del Teorema de la Categoría de Baire. Todos estos resultados desarrollan un papel importante en el estudio de los espacios de Banach. Finalizamos el trabajo de investigación considerando algunos ejemplos y consecuencias de los resultados tratados. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-01-16T16:11:14Z |
dc.date.available.none.fl_str_mv |
2018-01-16T16:11:14Z |
dc.date.issued.fl_str_mv |
2017-12-21 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.unap.edu.pe/handle/20.500.14082/6174 |
url |
http://repositorio.unap.edu.pe/handle/20.500.14082/6174 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad Nacional del Altiplano. Repositorio Institucional - UNAP |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Universidad Nacional del Altiplano Repositorio Institucional - UNAP |
dc.source.none.fl_str_mv |
reponame:UNAP-Institucional instname:Universidad Nacional Del Altiplano instacron:UNAP |
instname_str |
Universidad Nacional Del Altiplano |
instacron_str |
UNAP |
institution |
UNAP |
reponame_str |
UNAP-Institucional |
collection |
UNAP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.unap.edu.pe/bitstream/20.500.14082/6174/1/Rivas_Mamani_Miguel_Angel.pdf https://repositorio.unap.edu.pe/bitstream/20.500.14082/6174/2/license.txt https://repositorio.unap.edu.pe/bitstream/20.500.14082/6174/3/Rivas_Mamani_Miguel_Angel.pdf.txt |
bitstream.checksum.fl_str_mv |
6528042222cd808d3a019adc17e647d2 c52066b9c50a8f86be96c82978636682 8af84f4265ba2ba231c1aff93c642809 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional de la Universidad Nacional del Altiplano |
repository.mail.fl_str_mv |
dspace-help@myu.edu |
_version_ |
1819881008982392832 |
spelling |
Villalta Pacori, Julio CesarRivas Mamani, Miguel Angel2018-01-16T16:11:14Z2018-01-16T16:11:14Z2017-12-21http://repositorio.unap.edu.pe/handle/20.500.14082/6174Este trabajo de investigación fue motivado con la idea de presentar una demostración mas detallada y comprensible del teorema de la Categoria de Baire y mostrar sus aplicaciones. Primeramente demostraremos el Teorema de la Categoría de Baire, el cual afirma que el complemento de cualquier unión numerable de subconjuntos nada densos de un espacio métrico completo X, es denso en X. Este teorema implica, en particular, que un espacio métrico completo no puede ser dado como una unión numerable de conjuntos nada den- sos. En otras palabras, si en un espacio métrico completo es igual a la unión numerable de conjuntos, entonces no todos aquellos conjuntos pueden ser nada densos, esto es, al menos uno de ellos tiene clausura con su interior distinto del vacío. Como una primera aplicación del Teorema de la Categoría de Baire, consideramos el Teorema de Banach- Steinhaus, también llamado el Principio de la Acotación Uniforme por obvias razones. Otra aplicación del Principio de la Acotación Uniforme, por consiguiente una aplicación del Teorema de la Categoría de Baire, es el estudio de la continuidad conjunta de las aplicaciones bilineales. Seguidamente pasamos a considerar el Teorema de la Aplicación Abierta como una consecuencia del Teorema de la Categoría de Baire. Como un corolario del Teorema de la Aplicación Abierta tenemos el Teorema de la Aplicación Inversa, el cual afirma que cualquier aplicación lineal acotada y biyectiva entre espacio de Banach tiene inversa acotada. Finalmente, probamos el Teorema del Gráfico Cerrado como una consecuencia del Teorema de la Categoría de Baire. Todos estos resultados desarrollan un papel importante en el estudio de los espacios de Banach. Finalizamos el trabajo de investigación considerando algunos ejemplos y consecuencias de los resultados tratados.Tesisapplication/pdfspaUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esUniversidad Nacional del AltiplanoRepositorio Institucional - UNAPreponame:UNAP-Institucionalinstname:Universidad Nacional Del Altiplanoinstacron:UNAPTeorema de la categoría de BaireAnálisis funcionalMatemática puraLos resultados fundamentales del análisis funcional como consecuencia del teorema de la categoría de Baireinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en Ciencias Físico MatemáticasCiencias Físico MatemáticasUniversidad Nacional del Altiplano. Facultad de Ingeniería Civil y ArquitecturaTítulo Profesionalhttps://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/nivel#tituloProfesional533016ORIGINALRivas_Mamani_Miguel_Angel.pdfRivas_Mamani_Miguel_Angel.pdfapplication/pdf1517137https://repositorio.unap.edu.pe/bitstream/20.500.14082/6174/1/Rivas_Mamani_Miguel_Angel.pdf6528042222cd808d3a019adc17e647d2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81327https://repositorio.unap.edu.pe/bitstream/20.500.14082/6174/2/license.txtc52066b9c50a8f86be96c82978636682MD52TEXTRivas_Mamani_Miguel_Angel.pdf.txtRivas_Mamani_Miguel_Angel.pdf.txtExtracted texttext/plain73536https://repositorio.unap.edu.pe/bitstream/20.500.14082/6174/3/Rivas_Mamani_Miguel_Angel.pdf.txt8af84f4265ba2ba231c1aff93c642809MD5320.500.14082/6174oai:https://repositorio.unap.edu.pe:20.500.14082/61742024-02-27 14:29:08.947Repositorio institucional de la Universidad Nacional del Altiplanodspace-help@myu.edu77u/TGljZW5jaWEgZGUgVXNvCiAKRWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgZGlmdW5kZSBtZWRpYW50ZSBsb3MgdHJhYmFqb3MgZGUgaW52ZXN0aWdhY2nDs24gcHJvZHVjaWRvcyBwb3IgbG9zIG1pZW1icm9zIGRlIGxhIHVuaXZlcnNpZGFkLiBFbCBjb250ZW5pZG8gZGUgbG9zIGRvY3VtZW50b3MgZGlnaXRhbGVzIGVzIGRlIGFjY2VzbyBhYmllcnRvIHBhcmEgdG9kYSBwZXJzb25hIGludGVyZXNhZGEuCgpTZSBhY2VwdGEgbGEgZGlmdXNpw7NuIHDDumJsaWNhIGRlIGxhIG9icmEsIHN1IGNvcGlhIHkgZGlzdHJpYnVjacOzbi4gUGFyYSBlc3RvIGVzIG5lY2VzYXJpbyBxdWUgc2UgY3VtcGxhIGNvbiBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczoKCkVsIG5lY2VzYXJpbyByZWNvbm9jaW1pZW50byBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhLCBpZGVudGlmaWNhbmRvIG9wb3J0dW5hIHkgY29ycmVjdGFtZW50ZSBhIGxhIHBlcnNvbmEgcXVlIHBvc2VhIGxvcyBkZXJlY2hvcyBkZSBhdXRvci4KCk5vIGVzdMOhIHBlcm1pdGlkbyBlbCB1c28gaW5kZWJpZG8gZGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gY29uIGZpbmVzIGRlIGx1Y3JvIG8gY3VhbHF1aWVyIHRpcG8gZGUgYWN0aXZpZGFkIHF1ZSBwcm9kdXpjYSBnYW5hbmNpYXMgYSBsYXMgcGVyc29uYXMgcXVlIGxvIGRpZnVuZGVuIHNpbiBlbCBjb25zZW50aW1pZW50byBkZWwgYXV0b3IgKGF1dG9yIGxlZ2FsKS4KCkxvcyBkZXJlY2hvcyBtb3JhbGVzIGRlbCBhdXRvciBubyBzb24gYWZlY3RhZG9zIHBvciBsYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28uCgpEZXJlY2hvcyBkZSBhdXRvcgoKTGEgdW5pdmVyc2lkYWQgbm8gcG9zZWUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbC4gTG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNlIGVuY3VlbnRyYW4gcHJvdGVnaWRvcyBwb3IgbGEgbGVnaXNsYWNpw7NuIHBlcnVhbmE6IExleSBzb2JyZSBlbCBEZXJlY2hvIGRlIEF1dG9yIHByb211bGdhZG8gZW4gMTk5NiAoRC5MLiBOwrA4MjIpLCBMZXkgcXVlIG1vZGlmaWNhIGxvcyBhcnTDrWN1bG9zIDE4OMKwIHkgMTg5wrAgZGVsIGRlY3JldG8gbGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgcHJvbXVsZ2FkbyBlbiAyMDA1IChMZXkgTsKwMjg1MTcpLCBEZWNyZXRvIExlZ2lzbGF0aXZvIHF1ZSBhcHJ1ZWJhIGxhIG1vZGlmaWNhY2nDs24gZGVsIERlY3JldG8gTGVnaXNsYXRpdm8gTsKwODIyLCBMZXkgc29icmUgZWwgRGVyZWNobyBkZSBBdXRvciBwcm9tdWxnYWRvIGVuIDIwMDggKEQuTC4gTsKwMTA3NikuCg== |
score |
13.871978 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).