Prediction of academic performance using data mining in first year students of peruvian university

Descripción del Articulo

Academic performance is a subject that has been studied for a long time. First year students in universities are the most vulnerable to face performance problems, resulting in possible desertion. Data mining in education applies data mining techniques in the information generated in the education se...

Descripción completa

Detalles Bibliográficos
Autores: Yamao, Eiriku, Celi Saavedra, Luis, Campos Pérez, Rosalvina, Huancas Hurtado, Valery de Jesús
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad de San Martín de Porres
Repositorio:Revistas - Universidad de San Martín de Porres
Lenguaje:español
OAI Identifier:oai:revistas.usmp.edu.pe:article/1371
Enlace del recurso:https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371
Nivel de acceso:acceso abierto
Materia:Academic Performance
prediction
Educational Data Mining
EDM
Higher Education
id REVUSMP_c6233f367a8483b5fe127093281c5284
oai_identifier_str oai:revistas.usmp.edu.pe:article/1371
network_acronym_str REVUSMP
network_name_str Revistas - Universidad de San Martín de Porres
repository_id_str
spelling Prediction of academic performance using data mining in first year students of peruvian universityYamao, EirikuCeli Saavedra, LuisCampos Pérez, RosalvinaHuancas Hurtado, Valery de JesúsAcademic PerformancepredictionEducational Data MiningEDMHigher EducationAcademic performance is a subject that has been studied for a long time. First year students in universities are the most vulnerable to face performance problems, resulting in possible desertion. Data mining in education applies data mining techniques in the information generated in the education sector. The present research consists of making the prediction of the academic performance of the students who entered the Professional School of Computer and Systems Engineering of the University of San Martín de Porres in the first cycle using data mining. Data were extracted from 1304 entrants who were classified using three factors: social, economic and academic, and predictions were made using three techniques: linear regression, decision tree and support vector machines, having the best result of 82.87% obtained using the decision tree. Out of the different factors, those that most influenced the academic performance were the following: admission exam grade, gender, age, income and distance from home to the study center. Using data mining it was possible to elaborate predictions of the academic performance of the students, which allowed the detection of students who could encounter issues in their studies during the first semester.Universidad de San Martín de Porres2018-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371Campus; Vol. 23 No. 26 (2018): Campus XXVICampus; Vol. 23 Núm. 26 (2018): Campus XXVICampus; v. 23 n. 26 (2018): Campus XXVI2523-18201812-6049reponame:Revistas - Universidad de San Martín de Porresinstname:Universidad de San Martín de Porresinstacron:USMPspahttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371/1111https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371/1521Derechos de autor 2018 Revista Campusinfo:eu-repo/semantics/openAccessoai:revistas.usmp.edu.pe:article/13712021-07-26T19:51:25Z
dc.title.none.fl_str_mv Prediction of academic performance using data mining in first year students of peruvian university
title Prediction of academic performance using data mining in first year students of peruvian university
spellingShingle Prediction of academic performance using data mining in first year students of peruvian university
Yamao, Eiriku
Academic Performance
prediction
Educational Data Mining
EDM
Higher Education
title_short Prediction of academic performance using data mining in first year students of peruvian university
title_full Prediction of academic performance using data mining in first year students of peruvian university
title_fullStr Prediction of academic performance using data mining in first year students of peruvian university
title_full_unstemmed Prediction of academic performance using data mining in first year students of peruvian university
title_sort Prediction of academic performance using data mining in first year students of peruvian university
dc.creator.none.fl_str_mv Yamao, Eiriku
Celi Saavedra, Luis
Campos Pérez, Rosalvina
Huancas Hurtado, Valery de Jesús
author Yamao, Eiriku
author_facet Yamao, Eiriku
Celi Saavedra, Luis
Campos Pérez, Rosalvina
Huancas Hurtado, Valery de Jesús
author_role author
author2 Celi Saavedra, Luis
Campos Pérez, Rosalvina
Huancas Hurtado, Valery de Jesús
author2_role author
author
author
dc.subject.none.fl_str_mv Academic Performance
prediction
Educational Data Mining
EDM
Higher Education
topic Academic Performance
prediction
Educational Data Mining
EDM
Higher Education
description Academic performance is a subject that has been studied for a long time. First year students in universities are the most vulnerable to face performance problems, resulting in possible desertion. Data mining in education applies data mining techniques in the information generated in the education sector. The present research consists of making the prediction of the academic performance of the students who entered the Professional School of Computer and Systems Engineering of the University of San Martín de Porres in the first cycle using data mining. Data were extracted from 1304 entrants who were classified using three factors: social, economic and academic, and predictions were made using three techniques: linear regression, decision tree and support vector machines, having the best result of 82.87% obtained using the decision tree. Out of the different factors, those that most influenced the academic performance were the following: admission exam grade, gender, age, income and distance from home to the study center. Using data mining it was possible to elaborate predictions of the academic performance of the students, which allowed the detection of students who could encounter issues in their studies during the first semester.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371
url https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371/1111
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371/1521
dc.rights.none.fl_str_mv Derechos de autor 2018 Revista Campus
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2018 Revista Campus
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de San Martín de Porres
publisher.none.fl_str_mv Universidad de San Martín de Porres
dc.source.none.fl_str_mv Campus; Vol. 23 No. 26 (2018): Campus XXVI
Campus; Vol. 23 Núm. 26 (2018): Campus XXVI
Campus; v. 23 n. 26 (2018): Campus XXVI
2523-1820
1812-6049
reponame:Revistas - Universidad de San Martín de Porres
instname:Universidad de San Martín de Porres
instacron:USMP
instname_str Universidad de San Martín de Porres
instacron_str USMP
institution USMP
reponame_str Revistas - Universidad de San Martín de Porres
collection Revistas - Universidad de San Martín de Porres
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846883122383159296
score 12.624829
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).