Prediction of academic performance using data mining in first year students of peruvian university
Descripción del Articulo
Academic performance is a subject that has been studied for a long time. First year students in universities are the most vulnerable to face performance problems, resulting in possible desertion. Data mining in education applies data mining techniques in the information generated in the education se...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2018 |
| Institución: | Universidad de San Martín de Porres |
| Repositorio: | Revistas - Universidad de San Martín de Porres |
| Lenguaje: | español |
| OAI Identifier: | oai:revistas.usmp.edu.pe:article/1371 |
| Enlace del recurso: | https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371 |
| Nivel de acceso: | acceso abierto |
| Materia: | Academic Performance prediction Educational Data Mining EDM Higher Education |
| id |
REVUSMP_c6233f367a8483b5fe127093281c5284 |
|---|---|
| oai_identifier_str |
oai:revistas.usmp.edu.pe:article/1371 |
| network_acronym_str |
REVUSMP |
| network_name_str |
Revistas - Universidad de San Martín de Porres |
| repository_id_str |
|
| spelling |
Prediction of academic performance using data mining in first year students of peruvian universityYamao, EirikuCeli Saavedra, LuisCampos Pérez, RosalvinaHuancas Hurtado, Valery de JesúsAcademic PerformancepredictionEducational Data MiningEDMHigher EducationAcademic performance is a subject that has been studied for a long time. First year students in universities are the most vulnerable to face performance problems, resulting in possible desertion. Data mining in education applies data mining techniques in the information generated in the education sector. The present research consists of making the prediction of the academic performance of the students who entered the Professional School of Computer and Systems Engineering of the University of San Martín de Porres in the first cycle using data mining. Data were extracted from 1304 entrants who were classified using three factors: social, economic and academic, and predictions were made using three techniques: linear regression, decision tree and support vector machines, having the best result of 82.87% obtained using the decision tree. Out of the different factors, those that most influenced the academic performance were the following: admission exam grade, gender, age, income and distance from home to the study center. Using data mining it was possible to elaborate predictions of the academic performance of the students, which allowed the detection of students who could encounter issues in their studies during the first semester.Universidad de San Martín de Porres2018-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371Campus; Vol. 23 No. 26 (2018): Campus XXVICampus; Vol. 23 Núm. 26 (2018): Campus XXVICampus; v. 23 n. 26 (2018): Campus XXVI2523-18201812-6049reponame:Revistas - Universidad de San Martín de Porresinstname:Universidad de San Martín de Porresinstacron:USMPspahttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371/1111https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371/1521Derechos de autor 2018 Revista Campusinfo:eu-repo/semantics/openAccessoai:revistas.usmp.edu.pe:article/13712021-07-26T19:51:25Z |
| dc.title.none.fl_str_mv |
Prediction of academic performance using data mining in first year students of peruvian university |
| title |
Prediction of academic performance using data mining in first year students of peruvian university |
| spellingShingle |
Prediction of academic performance using data mining in first year students of peruvian university Yamao, Eiriku Academic Performance prediction Educational Data Mining EDM Higher Education |
| title_short |
Prediction of academic performance using data mining in first year students of peruvian university |
| title_full |
Prediction of academic performance using data mining in first year students of peruvian university |
| title_fullStr |
Prediction of academic performance using data mining in first year students of peruvian university |
| title_full_unstemmed |
Prediction of academic performance using data mining in first year students of peruvian university |
| title_sort |
Prediction of academic performance using data mining in first year students of peruvian university |
| dc.creator.none.fl_str_mv |
Yamao, Eiriku Celi Saavedra, Luis Campos Pérez, Rosalvina Huancas Hurtado, Valery de Jesús |
| author |
Yamao, Eiriku |
| author_facet |
Yamao, Eiriku Celi Saavedra, Luis Campos Pérez, Rosalvina Huancas Hurtado, Valery de Jesús |
| author_role |
author |
| author2 |
Celi Saavedra, Luis Campos Pérez, Rosalvina Huancas Hurtado, Valery de Jesús |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Academic Performance prediction Educational Data Mining EDM Higher Education |
| topic |
Academic Performance prediction Educational Data Mining EDM Higher Education |
| description |
Academic performance is a subject that has been studied for a long time. First year students in universities are the most vulnerable to face performance problems, resulting in possible desertion. Data mining in education applies data mining techniques in the information generated in the education sector. The present research consists of making the prediction of the academic performance of the students who entered the Professional School of Computer and Systems Engineering of the University of San Martín de Porres in the first cycle using data mining. Data were extracted from 1304 entrants who were classified using three factors: social, economic and academic, and predictions were made using three techniques: linear regression, decision tree and support vector machines, having the best result of 82.87% obtained using the decision tree. Out of the different factors, those that most influenced the academic performance were the following: admission exam grade, gender, age, income and distance from home to the study center. Using data mining it was possible to elaborate predictions of the academic performance of the students, which allowed the detection of students who could encounter issues in their studies during the first semester. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-10-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371 |
| url |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371/1111 https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/1371/1521 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2018 Revista Campus info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2018 Revista Campus |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.publisher.none.fl_str_mv |
Universidad de San Martín de Porres |
| publisher.none.fl_str_mv |
Universidad de San Martín de Porres |
| dc.source.none.fl_str_mv |
Campus; Vol. 23 No. 26 (2018): Campus XXVI Campus; Vol. 23 Núm. 26 (2018): Campus XXVI Campus; v. 23 n. 26 (2018): Campus XXVI 2523-1820 1812-6049 reponame:Revistas - Universidad de San Martín de Porres instname:Universidad de San Martín de Porres instacron:USMP |
| instname_str |
Universidad de San Martín de Porres |
| instacron_str |
USMP |
| institution |
USMP |
| reponame_str |
Revistas - Universidad de San Martín de Porres |
| collection |
Revistas - Universidad de San Martín de Porres |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846883122383159296 |
| score |
12.624829 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).