Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level

Descripción del Articulo

In this project, a differentiation is made between people through different parameters such as age, sex, educational level, among others, to try to calculate how much their salary could rise. This problem is important to solve because then a person could predict her future income through the decisio...

Descripción completa

Detalles Bibliográficos
Autores: Pacori Paucar, Crhistian Ziegler, Mayta Condori, Moises Enrique, Quispe Sanomamani, Luis Fernando, Montana Neyra, Diego Gustavo
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/158
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/158
https://doi.org/10.48168/innosoft.s15.a158
https://purl.org/42411/s15/a158
https://n2t.net/ark:/42411/s15/a158
Nivel de acceso:acceso abierto
Materia:Artificial Intelligence
decision trees
logistic regression
dataset
socioeconomic status
Inteligencia Artificial
árboles de decisión
regresión logística
nivel socioeconómico
id REVUSALLE_c21e79312b8bb1551b3836a98feaebcb
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/158
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Application of Artificial Intelligence techniques for the differentiation of the socioeconomic levelAplicación de técnicas de Inteligencia Artificial para la diferenciación del nivel socioeconómicoPacori Paucar, Crhistian ZieglerMayta Condori, Moises EnriqueQuispe Sanomamani, Luis FernandoMontana Neyra, Diego GustavoArtificial Intelligencedecision treeslogistic regressiondatasetsocioeconomic statusInteligencia Artificialárboles de decisiónregresión logísticadatasetnivel socioeconómicoIn this project, a differentiation is made between people through different parameters such as age, sex, educational level, among others, to try to calculate how much their salary could rise. This problem is important to solve because then a person could predict her future income through the decisions she would make in the present, such as how much education she should receive and when to start working to gain experience. Our procedure to solve this problem has been two statistical analyses, the first linear regression and a decision tree to be able to make a comparison between them, we have tested them using tools such as Colab (Python) and a dataset. Our population for our work was 32,000 records (rows). The results were that through the decision tree there was a precision of 0.88 and an accuracy of 0.82. And with respect to the logistic regression we obtained a precision of 0.80 when for the salary <=50K and 0.72 when the salary is >50K, the accuracy obtained is 0.7912. Concluding that between these two tools we are left with the Decision Tree.En este proyecto se hace una diferenciación entre personas a travez de diferentes parametros como edad,sexo,nivel educativo entre otros,para tratar de calcular a cuanto podria asender su salario. Este problema es importante a resolver por que así una persona podría predecir su futuros ingresos a través de las decisiones que tomaría en el presente, como por ejemplo hasta qué grado de educación debe recibir y cuando ya comenzar a trabajar para obtener experiencia. Nuestro procedimiento para resolver este problema han sido dos análisis estadísticos ,el primero regresión lineal y un árbol de decisión para poder hacer una comparativa entre estos, las hemos probado usando herramientas como Colab (Python) y un dataset. Nuestra población de nuestro trabajo fue de 32000 registros (filas).Los resultados fueron que a través del árbol de decisión hubo una precisión de 0.879 y un accuracy de 0.817 .Y con respecto a la regresión logística obtuvimos una precisión de 0.80 cuando para el sueldo <=50K y 0.72 cuando el sueldo es >50K, el accuracy obtenido es de 0.7912. Dando por conclusión que entre estas dos herramientas nos quedamos con el Árbol de decisión.Universidad La Salle2024-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal paperArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/158https://doi.org/10.48168/innosoft.s15.a158https://purl.org/42411/s15/a158https://n2t.net/ark:/42411/s15/a158Innovation and Software; Vol 5 No 1 (2024): March - August; 141-155Innovación y Software; Vol. 5 Núm. 1 (2024): Marzo - Agosto; 141-1552708-09352708-0927https://doi.org/10.48168/innosoft.s15https://purl.org/42411/s15https://n2t.net/ark:/42411/s15reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/158/209https://revistas.ulasalle.edu.pe/innosoft/article/view/158/210Derechos de autor 2024 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/1582025-07-03T08:02:24Z
dc.title.none.fl_str_mv Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
Aplicación de técnicas de Inteligencia Artificial para la diferenciación del nivel socioeconómico
title Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
spellingShingle Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
Pacori Paucar, Crhistian Ziegler
Artificial Intelligence
decision trees
logistic regression
dataset
socioeconomic status
Inteligencia Artificial
árboles de decisión
regresión logística
dataset
nivel socioeconómico
title_short Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
title_full Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
title_fullStr Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
title_full_unstemmed Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
title_sort Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
dc.creator.none.fl_str_mv Pacori Paucar, Crhistian Ziegler
Mayta Condori, Moises Enrique
Quispe Sanomamani, Luis Fernando
Montana Neyra, Diego Gustavo
author Pacori Paucar, Crhistian Ziegler
author_facet Pacori Paucar, Crhistian Ziegler
Mayta Condori, Moises Enrique
Quispe Sanomamani, Luis Fernando
Montana Neyra, Diego Gustavo
author_role author
author2 Mayta Condori, Moises Enrique
Quispe Sanomamani, Luis Fernando
Montana Neyra, Diego Gustavo
author2_role author
author
author
dc.subject.none.fl_str_mv Artificial Intelligence
decision trees
logistic regression
dataset
socioeconomic status
Inteligencia Artificial
árboles de decisión
regresión logística
dataset
nivel socioeconómico
topic Artificial Intelligence
decision trees
logistic regression
dataset
socioeconomic status
Inteligencia Artificial
árboles de decisión
regresión logística
dataset
nivel socioeconómico
description In this project, a differentiation is made between people through different parameters such as age, sex, educational level, among others, to try to calculate how much their salary could rise. This problem is important to solve because then a person could predict her future income through the decisions she would make in the present, such as how much education she should receive and when to start working to gain experience. Our procedure to solve this problem has been two statistical analyses, the first linear regression and a decision tree to be able to make a comparison between them, we have tested them using tools such as Colab (Python) and a dataset. Our population for our work was 32,000 records (rows). The results were that through the decision tree there was a precision of 0.88 and an accuracy of 0.82. And with respect to the logistic regression we obtained a precision of 0.80 when for the salary <=50K and 0.72 when the salary is >50K, the accuracy obtained is 0.7912. Concluding that between these two tools we are left with the Decision Tree.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/158
https://doi.org/10.48168/innosoft.s15.a158
https://purl.org/42411/s15/a158
https://n2t.net/ark:/42411/s15/a158
url https://revistas.ulasalle.edu.pe/innosoft/article/view/158
https://doi.org/10.48168/innosoft.s15.a158
https://purl.org/42411/s15/a158
https://n2t.net/ark:/42411/s15/a158
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/158/209
https://revistas.ulasalle.edu.pe/innosoft/article/view/158/210
dc.rights.none.fl_str_mv Derechos de autor 2024 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 5 No 1 (2024): March - August; 141-155
Innovación y Software; Vol. 5 Núm. 1 (2024): Marzo - Agosto; 141-155
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s15
https://purl.org/42411/s15
https://n2t.net/ark:/42411/s15
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847797540994416640
score 12.878693
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).