Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level
Descripción del Articulo
        In this project, a differentiation is made between people through different parameters such as age, sex, educational level, among others, to try to calculate how much their salary could rise. This problem is important to solve because then a person could predict her future income through the decisio...
              
            
    
                        | Autores: | , , , | 
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2024 | 
| Institución: | Universidad La Salle | 
| Repositorio: | Revistas - Universidad La Salle | 
| Lenguaje: | español | 
| OAI Identifier: | oai:ojs.revistas.ulasalle.edu.pe:article/158 | 
| Enlace del recurso: | https://revistas.ulasalle.edu.pe/innosoft/article/view/158 https://doi.org/10.48168/innosoft.s15.a158 https://purl.org/42411/s15/a158 https://n2t.net/ark:/42411/s15/a158  | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Artificial Intelligence decision trees logistic regression dataset socioeconomic status Inteligencia Artificial árboles de decisión regresión logística nivel socioeconómico  | 
| id | 
                  REVUSALLE_c21e79312b8bb1551b3836a98feaebcb | 
    
|---|---|
| oai_identifier_str | 
                  oai:ojs.revistas.ulasalle.edu.pe:article/158 | 
    
| network_acronym_str | 
                  REVUSALLE | 
    
| network_name_str | 
                  Revistas - Universidad La Salle | 
    
| repository_id_str | 
                   | 
    
| spelling | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic levelAplicación de técnicas de Inteligencia Artificial para la diferenciación del nivel socioeconómicoPacori Paucar, Crhistian ZieglerMayta Condori, Moises EnriqueQuispe Sanomamani, Luis FernandoMontana Neyra, Diego GustavoArtificial Intelligencedecision treeslogistic regressiondatasetsocioeconomic statusInteligencia Artificialárboles de decisiónregresión logísticadatasetnivel socioeconómicoIn this project, a differentiation is made between people through different parameters such as age, sex, educational level, among others, to try to calculate how much their salary could rise. This problem is important to solve because then a person could predict her future income through the decisions she would make in the present, such as how much education she should receive and when to start working to gain experience. Our procedure to solve this problem has been two statistical analyses, the first linear regression and a decision tree to be able to make a comparison between them, we have tested them using tools such as Colab (Python) and a dataset. Our population for our work was 32,000 records (rows). The results were that through the decision tree there was a precision of 0.88 and an accuracy of 0.82. And with respect to the logistic regression we obtained a precision of 0.80 when for the salary <=50K and 0.72 when the salary is >50K, the accuracy obtained is 0.7912. Concluding that between these two tools we are left with the Decision Tree.En este proyecto se hace una diferenciación entre personas a travez de diferentes parametros como edad,sexo,nivel educativo entre otros,para tratar de calcular a cuanto podria asender su salario. Este problema es importante a resolver por que así una persona podría predecir su futuros ingresos a través de las decisiones que tomaría en el presente, como por ejemplo hasta qué grado de educación debe recibir y cuando ya comenzar a trabajar para obtener experiencia. Nuestro procedimiento para resolver este problema han sido dos análisis estadísticos ,el primero regresión lineal y un árbol de decisión para poder hacer una comparativa entre estos, las hemos probado usando herramientas como Colab (Python) y un dataset. Nuestra población de nuestro trabajo fue de 32000 registros (filas).Los resultados fueron que a través del árbol de decisión hubo una precisión de 0.879 y un accuracy de 0.817 .Y con respecto a la regresión logística obtuvimos una precisión de 0.80 cuando para el sueldo <=50K y 0.72 cuando el sueldo es >50K, el accuracy obtenido es de 0.7912. Dando por conclusión que entre estas dos herramientas nos quedamos con el Árbol de decisión.Universidad La Salle2024-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal paperArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/158https://doi.org/10.48168/innosoft.s15.a158https://purl.org/42411/s15/a158https://n2t.net/ark:/42411/s15/a158Innovation and Software; Vol 5 No 1 (2024): March - August; 141-155Innovación y Software; Vol. 5 Núm. 1 (2024): Marzo - Agosto; 141-1552708-09352708-0927https://doi.org/10.48168/innosoft.s15https://purl.org/42411/s15https://n2t.net/ark:/42411/s15reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/158/209https://revistas.ulasalle.edu.pe/innosoft/article/view/158/210Derechos de autor 2024 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/1582025-07-03T08:02:24Z | 
    
| dc.title.none.fl_str_mv | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level Aplicación de técnicas de Inteligencia Artificial para la diferenciación del nivel socioeconómico  | 
    
| title | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level | 
    
| spellingShingle | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level Pacori Paucar, Crhistian Ziegler Artificial Intelligence decision trees logistic regression dataset socioeconomic status Inteligencia Artificial árboles de decisión regresión logística dataset nivel socioeconómico  | 
    
| title_short | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level | 
    
| title_full | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level | 
    
| title_fullStr | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level | 
    
| title_full_unstemmed | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level | 
    
| title_sort | 
                  Application of Artificial Intelligence techniques for the differentiation of the socioeconomic level | 
    
| dc.creator.none.fl_str_mv | 
                  Pacori Paucar, Crhistian Ziegler Mayta Condori, Moises Enrique Quispe Sanomamani, Luis Fernando Montana Neyra, Diego Gustavo  | 
    
| author | 
                  Pacori Paucar, Crhistian Ziegler | 
    
| author_facet | 
                  Pacori Paucar, Crhistian Ziegler Mayta Condori, Moises Enrique Quispe Sanomamani, Luis Fernando Montana Neyra, Diego Gustavo  | 
    
| author_role | 
                  author | 
    
| author2 | 
                  Mayta Condori, Moises Enrique Quispe Sanomamani, Luis Fernando Montana Neyra, Diego Gustavo  | 
    
| author2_role | 
                  author author author  | 
    
| dc.subject.none.fl_str_mv | 
                  Artificial Intelligence decision trees logistic regression dataset socioeconomic status Inteligencia Artificial árboles de decisión regresión logística dataset nivel socioeconómico  | 
    
| topic | 
                  Artificial Intelligence decision trees logistic regression dataset socioeconomic status Inteligencia Artificial árboles de decisión regresión logística dataset nivel socioeconómico  | 
    
| description | 
                  In this project, a differentiation is made between people through different parameters such as age, sex, educational level, among others, to try to calculate how much their salary could rise. This problem is important to solve because then a person could predict her future income through the decisions she would make in the present, such as how much education she should receive and when to start working to gain experience. Our procedure to solve this problem has been two statistical analyses, the first linear regression and a decision tree to be able to make a comparison between them, we have tested them using tools such as Colab (Python) and a dataset. Our population for our work was 32,000 records (rows). The results were that through the decision tree there was a precision of 0.88 and an accuracy of 0.82. And with respect to the logistic regression we obtained a precision of 0.80 when for the salary <=50K and 0.72 when the salary is >50K, the accuracy obtained is 0.7912. Concluding that between these two tools we are left with the Decision Tree. | 
    
| publishDate | 
                  2024 | 
    
| dc.date.none.fl_str_mv | 
                  2024-03-30 | 
    
| dc.type.none.fl_str_mv | 
                  info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Journal paper Artículos originales  | 
    
| format | 
                  article | 
    
| status_str | 
                  publishedVersion | 
    
| dc.identifier.none.fl_str_mv | 
                  https://revistas.ulasalle.edu.pe/innosoft/article/view/158 https://doi.org/10.48168/innosoft.s15.a158 https://purl.org/42411/s15/a158 https://n2t.net/ark:/42411/s15/a158  | 
    
| url | 
                  https://revistas.ulasalle.edu.pe/innosoft/article/view/158 https://doi.org/10.48168/innosoft.s15.a158 https://purl.org/42411/s15/a158 https://n2t.net/ark:/42411/s15/a158  | 
    
| dc.language.none.fl_str_mv | 
                  spa | 
    
| language | 
                  spa | 
    
| dc.relation.none.fl_str_mv | 
                  https://revistas.ulasalle.edu.pe/innosoft/article/view/158/209 https://revistas.ulasalle.edu.pe/innosoft/article/view/158/210  | 
    
| dc.rights.none.fl_str_mv | 
                  Derechos de autor 2024 Innovación y Software https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess  | 
    
| rights_invalid_str_mv | 
                  Derechos de autor 2024 Innovación y Software https://creativecommons.org/licenses/by/4.0  | 
    
| eu_rights_str_mv | 
                  openAccess | 
    
| dc.format.none.fl_str_mv | 
                  application/pdf text/html  | 
    
| dc.publisher.none.fl_str_mv | 
                  Universidad La Salle | 
    
| publisher.none.fl_str_mv | 
                  Universidad La Salle | 
    
| dc.source.none.fl_str_mv | 
                  Innovation and Software; Vol 5 No 1 (2024): March - August; 141-155 Innovación y Software; Vol. 5 Núm. 1 (2024): Marzo - Agosto; 141-155 2708-0935 2708-0927 https://doi.org/10.48168/innosoft.s15 https://purl.org/42411/s15 https://n2t.net/ark:/42411/s15 reponame:Revistas - Universidad La Salle instname:Universidad La Salle instacron:USALLE  | 
    
| instname_str | 
                  Universidad La Salle | 
    
| instacron_str | 
                  USALLE | 
    
| institution | 
                  USALLE | 
    
| reponame_str | 
                  Revistas - Universidad La Salle | 
    
| collection | 
                  Revistas - Universidad La Salle | 
    
| repository.name.fl_str_mv | 
                   | 
    
| repository.mail.fl_str_mv | 
                   | 
    
| _version_ | 
                  1847797540994416640 | 
    
| score | 
                  12.878693 | 
    
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).