Prediction of bubble pressure using machine learning

Descripción del Articulo

In the present study, the collection of machine learning algorithms of the Weka program was used to predict the bubble pressure of 36 oil samples, determining the accuracy of their results with the 10-fold cross-validation test method. Subsequently, for comparison purposes, the bubble pressures were...

Descripción completa

Detalles Bibliográficos
Autor: Gil, Oscar
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/82
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/82
https://doi.org/10.48168/innosoft.s11.a82
https://purl.org/42411/s11/a82
https://n2t.net/ark:/42411/s11/a82
Nivel de acceso:acceso abierto
Materia:Algorithms
Machine learning
Test method
Bubble pressure
Weka
Algoritmos
Aprendizaje automático
Método de prueba
Presión de burbujeo
Descripción
Sumario:In the present study, the collection of machine learning algorithms of the Weka program was used to predict the bubble pressure of 36 oil samples, determining the accuracy of their results with the 10-fold cross-validation test method. Subsequently, for comparison purposes, the bubble pressures were calculated with the correlation generated in the work from which the samples were taken and their results were more precise than those obtained by the algorithms in 4 of the 7 performance metrics used. Due to this situation, and considering that the correlation was evaluated with the same data with which it was generated, the test method was changed to validation with the training data and the bubble pressures were predicted again. Other things being equal, machine learning was more accurate than correlation on all performance metrics.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).