Deep Learning Techniques and Tools for Intelligent Weather Forecasting

Descripción del Articulo

In this paper, an analysis of deep learning techniques for weather forecasting using statistical downscaling approaches was developed. These are important, since they allow adjusting large-scale climate projections generated by the GCM climate model to more accurate and defined forecasts for specifi...

Descripción completa

Detalles Bibliográficos
Autores: Parimango Gómez, Kevin, Gutierrez Diaz, Jose Luis, Torres Villanueva, Marcelino
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/210
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/210
https://doi.org/10.48168/innosoft.s23.a210
https://purl.org/42411/s23/a210
https://n2t.net/ark:/42411/s23/a210
Nivel de acceso:acceso abierto
Materia:climate model
weather forecasting
downscaling
General Circulation Models
Convolutional Neural Networks
Adversarial Generative Networks
modelo climático
predicción meteorológica
reducción de escala
Modelos de Circulación General
Redes Neuronales Convolucionales
Redes Generativas Adversariales
Descripción
Sumario:In this paper, an analysis of deep learning techniques for weather forecasting using statistical downscaling approaches was developed. These are important, since they allow adjusting large-scale climate projections generated by the GCM climate model to more accurate and defined forecasts for specific areas, thus allowing overcoming the limitations of traditional numerical models in the representation of local and small-scale phenomena. Studies implementing Convolutional Neural Networks (CNN) and Generative Adversarial Networks (GAN) were analyzed in order to improve the spatial and temporal resolution of climate data. Both tools and techniques have proven to be effective in projects such as VALUE, which is in charge of evaluating downscaling methods in Europe, and DL4DS, a Python library in charge of applying deep learning algorithms to empirical downscaling of climate data. The main objective of this paper was to analyze the effectiveness of both tools and techniques focused on accuracy, scalability and computational efficiency, providing a complete overview of their use for the improvement of local weather forecasting.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).