Predictive model of water potability through a decision tree in Artificial Intelligence

Descripción del Articulo

The objective of this work was to use the decision tree technique to define a model capable of predicting water potability. To evaluate the performance of the decision tree classification, a dataset extracted from Kaggle was used, which has 3276 water samples divided by the potability variable. Appl...

Descripción completa

Detalles Bibliográficos
Autores: Zevallos Apaza, Angel Alexis, Onque Gárate, Sofía Sair, Canaza Cuadros, Arian Eduardo Javier, Choqueneira Ccasa, Paulina Miriam
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/72
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/72
https://doi.org/10.48168/innosoft.s9.a72
https://purl.org/42411/s9/a72
https://n2t.net/ark:/42411/s9/a72
Nivel de acceso:acceso abierto
Materia:Drinking water
artificial intelligence
decision tree
Agua potable
inteligencia artificial
árbol de decisión
id REVUSALLE_5b18d7e0a11c11ad27714b5e1dd2a184
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/72
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Predictive model of water potability through a decision tree in Artificial IntelligenceModelo predictivo de la potabilidad del agua mediante un árbol de decisión en Inteligencia ArtificialZevallos Apaza, Angel AlexisOnque Gárate, Sofía SairCanaza Cuadros, Arian Eduardo JavierChoqueneira Ccasa, Paulina MiriamDrinking waterartificial intelligencedecision treeAgua potableinteligencia artificialárbol de decisiónThe objective of this work was to use the decision tree technique to define a model capable of predicting water potability. To evaluate the performance of the decision tree classification, a dataset extracted from Kaggle was used, which has 3276 water samples divided by the potability variable. Applying the Pandas and Scikit Learn libraries, a model based on a decision tree evaluated with the metrics of precision, accuracy, completeness, and F1 score was defined, achieving 0.77, 0.80, 0.85, and 0.81, respectively.En este trabajo se planteó como objetivo utilizar la técnica de árbol de decisión para definir un modelo capaz de predecir la potabilidad del agua. Para evaluar el rendimiento de la clasificación del árbol de decisión se utilizó un dataset extraído de Kaggle que cuenta con 3276 muestras de agua divididas por la variable de potabilidad. Aplicando las librerías Pandas y Scikit Learn se logró definir un modelo basado en un árbol de decisión evaluado con las métricas de precisión, exactitud, exhaustividad y puntuación F1 logrando 0.77, 0.80, 0.85 y 0.81 respectivamente.Universidad La Salle2022-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/72https://doi.org/10.48168/innosoft.s9.a72https://purl.org/42411/s9/a72https://n2t.net/ark:/42411/s9/a72Innovation and Software; Vol 3 No 2 (2022): September - February; 121-131Innovación y Software; Vol. 3 Núm. 2 (2022): Septiembre - Febrero; 121-1312708-09352708-0927https://doi.org/10.48168/innosoft.s9https://purl.org/42411/s9https://n2t.net/ark:/42411/s9reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/72/83https://revistas.ulasalle.edu.pe/innosoft/article/view/72/84https://purl.org/42411/s9/a72/g83https://purl.org/42411/s9/a72/g84https://n2t.net/ark:/42411/s9/a72/g83https://n2t.net/ark:/42411/s9/a72/g8420222022Derechos de autor 2022 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/722025-07-03T08:02:01Z
dc.title.none.fl_str_mv Predictive model of water potability through a decision tree in Artificial Intelligence
Modelo predictivo de la potabilidad del agua mediante un árbol de decisión en Inteligencia Artificial
title Predictive model of water potability through a decision tree in Artificial Intelligence
spellingShingle Predictive model of water potability through a decision tree in Artificial Intelligence
Zevallos Apaza, Angel Alexis
Drinking water
artificial intelligence
decision tree
Agua potable
inteligencia artificial
árbol de decisión
title_short Predictive model of water potability through a decision tree in Artificial Intelligence
title_full Predictive model of water potability through a decision tree in Artificial Intelligence
title_fullStr Predictive model of water potability through a decision tree in Artificial Intelligence
title_full_unstemmed Predictive model of water potability through a decision tree in Artificial Intelligence
title_sort Predictive model of water potability through a decision tree in Artificial Intelligence
dc.creator.none.fl_str_mv Zevallos Apaza, Angel Alexis
Onque Gárate, Sofía Sair
Canaza Cuadros, Arian Eduardo Javier
Choqueneira Ccasa, Paulina Miriam
author Zevallos Apaza, Angel Alexis
author_facet Zevallos Apaza, Angel Alexis
Onque Gárate, Sofía Sair
Canaza Cuadros, Arian Eduardo Javier
Choqueneira Ccasa, Paulina Miriam
author_role author
author2 Onque Gárate, Sofía Sair
Canaza Cuadros, Arian Eduardo Javier
Choqueneira Ccasa, Paulina Miriam
author2_role author
author
author
dc.subject.none.fl_str_mv Drinking water
artificial intelligence
decision tree
Agua potable
inteligencia artificial
árbol de decisión
topic Drinking water
artificial intelligence
decision tree
Agua potable
inteligencia artificial
árbol de decisión
description The objective of this work was to use the decision tree technique to define a model capable of predicting water potability. To evaluate the performance of the decision tree classification, a dataset extracted from Kaggle was used, which has 3276 water samples divided by the potability variable. Applying the Pandas and Scikit Learn libraries, a model based on a decision tree evaluated with the metrics of precision, accuracy, completeness, and F1 score was defined, achieving 0.77, 0.80, 0.85, and 0.81, respectively.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/72
https://doi.org/10.48168/innosoft.s9.a72
https://purl.org/42411/s9/a72
https://n2t.net/ark:/42411/s9/a72
url https://revistas.ulasalle.edu.pe/innosoft/article/view/72
https://doi.org/10.48168/innosoft.s9.a72
https://purl.org/42411/s9/a72
https://n2t.net/ark:/42411/s9/a72
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/72/83
https://revistas.ulasalle.edu.pe/innosoft/article/view/72/84
https://purl.org/42411/s9/a72/g83
https://purl.org/42411/s9/a72/g84
https://n2t.net/ark:/42411/s9/a72/g83
https://n2t.net/ark:/42411/s9/a72/g84
dc.rights.none.fl_str_mv Derechos de autor 2022 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2022
2022
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 3 No 2 (2022): September - February; 121-131
Innovación y Software; Vol. 3 Núm. 2 (2022): Septiembre - Febrero; 121-131
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s9
https://purl.org/42411/s9
https://n2t.net/ark:/42411/s9
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1844626634388275200
score 13.403676
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).