Implications of algorithmic fairness in artificial intelligence
Descripción del Articulo
The use of Artificial Intelligence algorithms is not limited, as is sometimes assumed, to effective procedures; the use of this vocabulary raises several conceptions, interpretations and problems. In order not to get distracted in this linguistic labyrinth, we have taken a position on a very common...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Ricardo Palma |
| Repositorio: | Revistas - Universidad Ricardo Palma |
| Lenguaje: | español |
| OAI Identifier: | oai:oai.revistas.urp.edu.pe:article/7056 |
| Enlace del recurso: | http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056 |
| Nivel de acceso: | acceso abierto |
| Materia: | Algorithmic algorithmic fairness artificial intelligence Algoritmica Equidad algoritmica inteligencia artificial equidad de datos |
| id |
REVURP_49d2f82a5689137379d7bbee091adaf5 |
|---|---|
| oai_identifier_str |
oai:oai.revistas.urp.edu.pe:article/7056 |
| network_acronym_str |
REVURP |
| network_name_str |
Revistas - Universidad Ricardo Palma |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
Implications of algorithmic fairness in artificial intelligence Implicancias de la equidad algorítmica en la Inteligencia artificial |
| title |
Implications of algorithmic fairness in artificial intelligence |
| spellingShingle |
Implications of algorithmic fairness in artificial intelligence Cortez Vasquez, Augusto Parcemon Algorithmic algorithmic fairness artificial intelligence Algoritmica Equidad algoritmica inteligencia artificial equidad de datos |
| title_short |
Implications of algorithmic fairness in artificial intelligence |
| title_full |
Implications of algorithmic fairness in artificial intelligence |
| title_fullStr |
Implications of algorithmic fairness in artificial intelligence |
| title_full_unstemmed |
Implications of algorithmic fairness in artificial intelligence |
| title_sort |
Implications of algorithmic fairness in artificial intelligence |
| dc.creator.none.fl_str_mv |
Cortez Vasquez, Augusto Parcemon Manyari Monteza, Maria Salinas Azaña , Gilberto Chávez Soto, Jorge Luis |
| author |
Cortez Vasquez, Augusto Parcemon |
| author_facet |
Cortez Vasquez, Augusto Parcemon Manyari Monteza, Maria Salinas Azaña , Gilberto Chávez Soto, Jorge Luis |
| author_role |
author |
| author2 |
Manyari Monteza, Maria Salinas Azaña , Gilberto Chávez Soto, Jorge Luis |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Algorithmic algorithmic fairness artificial intelligence Algoritmica Equidad algoritmica inteligencia artificial equidad de datos |
| topic |
Algorithmic algorithmic fairness artificial intelligence Algoritmica Equidad algoritmica inteligencia artificial equidad de datos |
| description |
The use of Artificial Intelligence algorithms is not limited, as is sometimes assumed, to effective procedures; the use of this vocabulary raises several conceptions, interpretations and problems. In order not to get distracted in this linguistic labyrinth, we have taken a position on a very common characterization in the psychological sense that consists of conceiving it as a capacity possessed by certain organisms/mechanisms to adapt to new situations using for this purpose the knowledge acquired in the course. . from previous adaptation processes. The emergence of artificial intelligence (AI) is increasingly integrated into society and is generally used to make timely decisions that affect society and therefore people, in different areas. In the development of AI algorithms, systemic and repeatable errors can occur in a computer system that create unfair results, such as privileging an arbitrary group of users over others. These so-called biased algorithms are generally characterized by the existence of biases or distortions in the training data. The scientific community and government institutions have launched proposals to combat these risks that seek to reduce their negative impact on society. It is imperative to resolve aspects that go against Ethics, justice, Transparency and Equity of data, algorithms and their predictions. The present work aims to raise awareness that the development of algorithms to make decisions must meet three requirements: first, guarantee the balance between the set of data used and the programming of the algorithm with fairness that avoids discrimination and bias, second, guarantee conditions of transparency in the results, that is, the result obtained must be explainable to any user in a clear and simple way. The regulation of requirements for the development and use of AI should not be ignored, it must be aligned with the non-affecting of fundamental human rights |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-31 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056 10.31381/perfilesingenieria.v21i22.7056 |
| url |
http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056 |
| identifier_str_mv |
10.31381/perfilesingenieria.v21i22.7056 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056/11422 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad Ricardo Palma |
| publisher.none.fl_str_mv |
Universidad Ricardo Palma |
| dc.source.none.fl_str_mv |
Engineering Profiles; Vol. 21 No. 22 (2024): Perfiles de Ingeniería (july-december) 2024; 134-146 Perfiles de Ingeniería; Vol. 21 Núm. 22 (2024): Perfiles de Ingeniería (julio-diciembre) 2024; 134-146 2519-5719 1996-6660 10.31381/perfilesingenieria.v21i22 reponame:Revistas - Universidad Ricardo Palma instname:Universidad Ricardo Palma instacron:URP |
| instname_str |
Universidad Ricardo Palma |
| instacron_str |
URP |
| institution |
URP |
| reponame_str |
Revistas - Universidad Ricardo Palma |
| collection |
Revistas - Universidad Ricardo Palma |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1821334075301953536 |
| spelling |
Implications of algorithmic fairness in artificial intelligenceImplicancias de la equidad algorítmica en la Inteligencia artificial Cortez Vasquez, Augusto ParcemonManyari Monteza, Maria Salinas Azaña , Gilberto Chávez Soto, Jorge Luis Algorithmicalgorithmic fairnessartificial intelligenceAlgoritmicaEquidad algoritmicainteligencia artificialequidad de datosThe use of Artificial Intelligence algorithms is not limited, as is sometimes assumed, to effective procedures; the use of this vocabulary raises several conceptions, interpretations and problems. In order not to get distracted in this linguistic labyrinth, we have taken a position on a very common characterization in the psychological sense that consists of conceiving it as a capacity possessed by certain organisms/mechanisms to adapt to new situations using for this purpose the knowledge acquired in the course. . from previous adaptation processes. The emergence of artificial intelligence (AI) is increasingly integrated into society and is generally used to make timely decisions that affect society and therefore people, in different areas. In the development of AI algorithms, systemic and repeatable errors can occur in a computer system that create unfair results, such as privileging an arbitrary group of users over others. These so-called biased algorithms are generally characterized by the existence of biases or distortions in the training data. The scientific community and government institutions have launched proposals to combat these risks that seek to reduce their negative impact on society. It is imperative to resolve aspects that go against Ethics, justice, Transparency and Equity of data, algorithms and their predictions. The present work aims to raise awareness that the development of algorithms to make decisions must meet three requirements: first, guarantee the balance between the set of data used and the programming of the algorithm with fairness that avoids discrimination and bias, second, guarantee conditions of transparency in the results, that is, the result obtained must be explainable to any user in a clear and simple way. The regulation of requirements for the development and use of AI should not be ignored, it must be aligned with the non-affecting of fundamental human rightsEl uso de algoritmos de Inteligencia artificial no se limita como a veces se supone a procedimientos efectivos, el uso de este vocablo plantea varias concepciones, interpretaciones y problemas. Con el fin de no distraernos en este laberinto lingüístico, hemos tomado posición por una caracterización muy común en sentido psicológico que consiste en concebirla como una capacidad poseída por ciertos organismos/mecanismos para adaptarse a situaciones nuevas utilizando para tal efecto el conocimiento adquirido en el curso de anteriores procesos de adaptación. La irrupción de la inteligencia artificial (IA) se integra cada vez más en la sociedad y generalmente se utiliza para la toma de decisiones oportunas que afectan a la sociedad y por ende a las personas, en diferentes ámbitos. En el desarrollo de algoritmos de la IA, pueden ocurrir errores sistémicos y repetibles en un sistema informático que crean resultados injustos, como privilegiar a un grupo arbitrario de usuarios frente a otros. Estos algoritmos denominados sesgados, se caracterizan generalmente por la existencia de prejuicios o distorsiones en los datos de entrenamiento. La comunidad científica e instituciones gubernamentales han lanzado propuestas para combatir estos riesgos que buscan reducir su impacto negativo en la sociedad. Es imperativo resolver aspectos que van contra la Ética, la justicia, la Transparencia y la Equidad de los datos, algoritmos y sus predicciones. El presente trabajo pretende sensibilizar que desarrollo de algoritmos para tomar decisiones deben cumplir tres requisitos: en primer lugar, garantizar el equilibrio entre el conjunto de datos utilizados y la programación del algoritmo con equidad que evite la discriminación y el sesgo, segundo, garantizar condiciones de transparencia en los resultados, es decir, el resultado obtenido debe ser explicable a cualquier usuario de forma clara y sencilla. No debe soslayarse la regulación de requisitos para el desarrollo y uso de la IA, debe alinearse a la no afectación de los derechos humanos fundamentalesUniversidad Ricardo Palma2024-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/705610.31381/perfilesingenieria.v21i22.7056Engineering Profiles; Vol. 21 No. 22 (2024): Perfiles de Ingeniería (july-december) 2024; 134-146Perfiles de Ingeniería; Vol. 21 Núm. 22 (2024): Perfiles de Ingeniería (julio-diciembre) 2024; 134-1462519-57191996-666010.31381/perfilesingenieria.v21i22reponame:Revistas - Universidad Ricardo Palmainstname:Universidad Ricardo Palmainstacron:URPspahttp://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056/11422Derechos de autor 2024 Augusto Parcemon Cortez Vasquez, Maria Manyari Monteza, Gilberto Salinas Azaña , Jorge Luis Chávez Sotohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:oai.revistas.urp.edu.pe:article/70562025-01-03T14:00:58Z |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).