Implications of algorithmic fairness in artificial intelligence

Descripción del Articulo

The use of Artificial Intelligence algorithms is not limited, as is sometimes assumed, to effective procedures; the use of this vocabulary raises several conceptions, interpretations and problems. In order not to get distracted in this linguistic labyrinth, we have taken a position on a very common...

Descripción completa

Detalles Bibliográficos
Autores: Cortez Vasquez, Augusto Parcemon, Manyari Monteza, Maria, Salinas Azaña , Gilberto, Chávez Soto, Jorge Luis
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Ricardo Palma
Repositorio:Revistas - Universidad Ricardo Palma
Lenguaje:español
OAI Identifier:oai:oai.revistas.urp.edu.pe:article/7056
Enlace del recurso:http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056
Nivel de acceso:acceso abierto
Materia:Algorithmic
algorithmic fairness
artificial intelligence
Algoritmica
Equidad algoritmica
inteligencia artificial
equidad de datos
id REVURP_49d2f82a5689137379d7bbee091adaf5
oai_identifier_str oai:oai.revistas.urp.edu.pe:article/7056
network_acronym_str REVURP
network_name_str Revistas - Universidad Ricardo Palma
repository_id_str
dc.title.none.fl_str_mv Implications of algorithmic fairness in artificial intelligence
Implicancias de la equidad algorítmica en la Inteligencia artificial
title Implications of algorithmic fairness in artificial intelligence
spellingShingle Implications of algorithmic fairness in artificial intelligence
Cortez Vasquez, Augusto Parcemon
Algorithmic
algorithmic fairness
artificial intelligence
Algoritmica
Equidad algoritmica
inteligencia artificial
equidad de datos
title_short Implications of algorithmic fairness in artificial intelligence
title_full Implications of algorithmic fairness in artificial intelligence
title_fullStr Implications of algorithmic fairness in artificial intelligence
title_full_unstemmed Implications of algorithmic fairness in artificial intelligence
title_sort Implications of algorithmic fairness in artificial intelligence
dc.creator.none.fl_str_mv Cortez Vasquez, Augusto Parcemon
Manyari Monteza, Maria
Salinas Azaña , Gilberto
Chávez Soto, Jorge Luis
author Cortez Vasquez, Augusto Parcemon
author_facet Cortez Vasquez, Augusto Parcemon
Manyari Monteza, Maria
Salinas Azaña , Gilberto
Chávez Soto, Jorge Luis
author_role author
author2 Manyari Monteza, Maria
Salinas Azaña , Gilberto
Chávez Soto, Jorge Luis
author2_role author
author
author
dc.subject.none.fl_str_mv Algorithmic
algorithmic fairness
artificial intelligence
Algoritmica
Equidad algoritmica
inteligencia artificial
equidad de datos
topic Algorithmic
algorithmic fairness
artificial intelligence
Algoritmica
Equidad algoritmica
inteligencia artificial
equidad de datos
description The use of Artificial Intelligence algorithms is not limited, as is sometimes assumed, to effective procedures; the use of this vocabulary raises several conceptions, interpretations and problems. In order not to get distracted in this linguistic labyrinth, we have taken a position on a very common characterization in the psychological sense that consists of conceiving it as a capacity possessed by certain organisms/mechanisms to adapt to new situations using for this purpose the knowledge acquired in the course. . from previous adaptation processes. The emergence of artificial intelligence (AI) is increasingly integrated into society and is generally used to make timely decisions that affect society and therefore people, in different areas. In the development of AI algorithms, systemic and repeatable errors can occur in a computer system that create unfair results, such as privileging an arbitrary group of users over others. These so-called biased algorithms are generally characterized by the existence of biases or distortions in the training data. The scientific community and government institutions have launched proposals to combat these risks that seek to reduce their negative impact on society.  It is imperative to resolve aspects that go against Ethics, justice, Transparency and Equity of data, algorithms and their predictions.  The present work aims to raise awareness that the development of algorithms to make decisions must meet three requirements: first, guarantee the balance between the set of data used and the programming of the algorithm with fairness that avoids discrimination and bias, second, guarantee conditions of transparency in the results, that is, the result obtained must be explainable to any user in a clear and simple way. The regulation of requirements for the development and use of AI should not be ignored, it must be aligned with the non-affecting of fundamental human rights
publishDate 2024
dc.date.none.fl_str_mv 2024-12-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056
10.31381/perfilesingenieria.v21i22.7056
url http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056
identifier_str_mv 10.31381/perfilesingenieria.v21i22.7056
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056/11422
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Ricardo Palma
publisher.none.fl_str_mv Universidad Ricardo Palma
dc.source.none.fl_str_mv Engineering Profiles; Vol. 21 No. 22 (2024): Perfiles de Ingeniería (july-december) 2024; 134-146
Perfiles de Ingeniería; Vol. 21 Núm. 22 (2024): Perfiles de Ingeniería (julio-diciembre) 2024; 134-146
2519-5719
1996-6660
10.31381/perfilesingenieria.v21i22
reponame:Revistas - Universidad Ricardo Palma
instname:Universidad Ricardo Palma
instacron:URP
instname_str Universidad Ricardo Palma
instacron_str URP
institution URP
reponame_str Revistas - Universidad Ricardo Palma
collection Revistas - Universidad Ricardo Palma
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1821334075301953536
spelling Implications of algorithmic fairness in artificial intelligenceImplicancias de la equidad algorítmica en la Inteligencia artificial Cortez Vasquez, Augusto ParcemonManyari Monteza, Maria Salinas Azaña , Gilberto Chávez Soto, Jorge Luis Algorithmicalgorithmic fairnessartificial intelligenceAlgoritmicaEquidad algoritmicainteligencia artificialequidad de datosThe use of Artificial Intelligence algorithms is not limited, as is sometimes assumed, to effective procedures; the use of this vocabulary raises several conceptions, interpretations and problems. In order not to get distracted in this linguistic labyrinth, we have taken a position on a very common characterization in the psychological sense that consists of conceiving it as a capacity possessed by certain organisms/mechanisms to adapt to new situations using for this purpose the knowledge acquired in the course. . from previous adaptation processes. The emergence of artificial intelligence (AI) is increasingly integrated into society and is generally used to make timely decisions that affect society and therefore people, in different areas. In the development of AI algorithms, systemic and repeatable errors can occur in a computer system that create unfair results, such as privileging an arbitrary group of users over others. These so-called biased algorithms are generally characterized by the existence of biases or distortions in the training data. The scientific community and government institutions have launched proposals to combat these risks that seek to reduce their negative impact on society.  It is imperative to resolve aspects that go against Ethics, justice, Transparency and Equity of data, algorithms and their predictions.  The present work aims to raise awareness that the development of algorithms to make decisions must meet three requirements: first, guarantee the balance between the set of data used and the programming of the algorithm with fairness that avoids discrimination and bias, second, guarantee conditions of transparency in the results, that is, the result obtained must be explainable to any user in a clear and simple way. The regulation of requirements for the development and use of AI should not be ignored, it must be aligned with the non-affecting of fundamental human rightsEl uso de algoritmos de Inteligencia artificial no se limita como a veces se supone a procedimientos efectivos, el uso de este vocablo plantea varias concepciones, interpretaciones y problemas. Con el fin de no distraernos en este laberinto lingüístico, hemos tomado posición por una caracterización muy común en sentido psicológico que consiste en concebirla como una capacidad poseída por ciertos organismos/mecanismos para adaptarse a situaciones nuevas utilizando para tal efecto el conocimiento adquirido en el curso de anteriores procesos de adaptación. La irrupción de la inteligencia artificial (IA) se integra cada vez más en la sociedad y generalmente se utiliza para la toma de decisiones oportunas que afectan a la sociedad y por ende a las personas, en diferentes ámbitos. En el desarrollo de algoritmos de la IA, pueden ocurrir errores sistémicos y repetibles en un sistema informático que crean resultados injustos, como privilegiar a un grupo arbitrario de usuarios frente a otros. Estos algoritmos denominados sesgados, se caracterizan generalmente por la existencia de prejuicios o distorsiones en los datos de entrenamiento. La comunidad científica e instituciones gubernamentales han lanzado propuestas para combatir estos riesgos que buscan reducir su impacto negativo en la sociedad.  Es imperativo resolver aspectos que van contra la Ética, la justicia, la Transparencia y la Equidad de los datos, algoritmos y sus predicciones.  El presente trabajo pretende sensibilizar que desarrollo de algoritmos para tomar decisiones deben cumplir tres requisitos: en primer lugar, garantizar el equilibrio entre el conjunto de datos utilizados y la programación del algoritmo con equidad que evite la discriminación y el sesgo, segundo, garantizar condiciones de transparencia en los resultados, es decir, el resultado obtenido debe ser explicable a cualquier usuario de forma clara y sencilla. No debe soslayarse la regulación  de requisitos para el desarrollo y uso de la IA,  debe alinearse a la no afectación de  los derechos humanos fundamentalesUniversidad Ricardo Palma2024-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/705610.31381/perfilesingenieria.v21i22.7056Engineering Profiles; Vol. 21 No. 22 (2024): Perfiles de Ingeniería (july-december) 2024; 134-146Perfiles de Ingeniería; Vol. 21 Núm. 22 (2024): Perfiles de Ingeniería (julio-diciembre) 2024; 134-1462519-57191996-666010.31381/perfilesingenieria.v21i22reponame:Revistas - Universidad Ricardo Palmainstname:Universidad Ricardo Palmainstacron:URPspahttp://revistas.urp.edu.pe/index.php/Perfiles_Ingenieria/article/view/7056/11422Derechos de autor 2024 Augusto Parcemon Cortez Vasquez, Maria Manyari Monteza, Gilberto Salinas Azaña , Jorge Luis Chávez Sotohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:oai.revistas.urp.edu.pe:article/70562025-01-03T14:00:58Z
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).