DISCRIMINANT ANALYSIS APPLIED TO PREDICTION MODELS IN BANKRUPTCY

Descripción del Articulo

The companies increasingly interact with clients and providers. This situation requires adequate risk ma-nagement to prevent situations of financial distress. A company is technically insolvent when it has enough cash to make immediate payments. Therefore, one of the points to study is the financial...

Descripción completa

Detalles Bibliográficos
Autores: Aldazábal Contreras, Janet Cecibel, Napán Vera, Alberto Fernando
Formato: artículo
Fecha de Publicación:2014
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:ojs.csi.unmsm:article/11035
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/quipu/article/view/11035
Nivel de acceso:acceso abierto
Materia:Bankruptcy
prediction models
ratio
Multiple Dis-criminant Analysis
Altman
Quiebra
modelos de predicción
Análisis Discriminante Múltiple
Altman.
Descripción
Sumario:The companies increasingly interact with clients and providers. This situation requires adequate risk ma-nagement to prevent situations of financial distress. A company is technically insolvent when it has enough cash to make immediate payments. Therefore, one of the points to study is the financial solvency and risk to the bankruptcy of its customer base. To this end, there are techniques to measure the possibility of insolvency of a company. The most reliable is the Altman Z model, which is based on the statistical technique of Multiple Discriminant Analysis. This model uses financial ratios to determine the financial risk and predict whether a company is healthy from a financial point of view, or is on its way to become insolvent. The results found by Altman and revision of the original model proposed by him is presented.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).