Analysis of the magnetization for Fe and Ni ferromagnetic nanoparticles with variable geometry using VAMPIRE software

Descripción del Articulo

The purpose of this research is to have a quantitative analysis on the temperature dependence magnetization of ferromagnetic nanoparticles (NPs), i.e., the Curie temperature (Tc), was systematically studied. The atomistic simulations were carried out using the VAMPIRE 5.0 software based on the Landa...

Descripción completa

Detalles Bibliográficos
Autores: Alca-Ramos, Yacu V., Ramos-Guivar, Juan A., Caetano Passamani, Edson
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:inglés
OAI Identifier:oai:ojs.csi.unmsm:article/23069
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/fisica/article/view/23069
Nivel de acceso:acceso abierto
Materia:Iron
Nickel
Critical temperature
Magnetization
Curie temperature
Nanoparticle
Hierro
Níquel
Magnetización
Temperatura de Curie
anisotropía
Nanopartícula
Descripción
Sumario:The purpose of this research is to have a quantitative analysis on the temperature dependence magnetization of ferromagnetic nanoparticles (NPs), i.e., the Curie temperature (Tc), was systematically studied. The atomistic simulations were carried out using the VAMPIRE 5.0 software based on the Landau-Lifshitz-Gilbert-Heun method. The variable parameters of the simulations were damping, time step, particle geometry (spherical, cubic, and cylindrical) and particle size. We have calculated λ for Fe and Ni, in addition we have found different Tc values for each nanogeometry studied following a finite-size effect. We have found ν values for cubic NPs close to the reported values. In particular, it was observed that the Tc values for the studied geometries in the case of Fe and Ni decreases from their theoretical bulk values, for a critical particle size diameter less than 5 nm. Hence, the presented results (optimized atomistic parameters such as simulation time step, damping, and critical exponents) are the basis for advanced simulations of hybrid and complex nanostructures with perspective in biomedical and environmental applications.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).