Análise lexical de textos gerados por modelos linguísticos: reflexão sobre os seus modelos de mundo

Descripción del Articulo

Artificial intelligence (AI) has transformed numerous fields, including linguistics. Large Language Models (LLMs) have revolutionized interaction with text by providing responses that mimic human language. These models not only generate text, but also reflect their interpretation of the world. Howev...

Descripción completa

Detalles Bibliográficos
Autores: Kotz, Gabriela, Salcedo, Pedro, Fuentes, Karina
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:Revistas - Universidad Nacional Mayor de San Marcos
Lenguaje:español
OAI Identifier:oai:revistasinvestigacion.unmsm.edu.pe:article/28336
Enlace del recurso:https://revistasinvestigacion.unmsm.edu.pe/index.php/lenguaysociedad/article/view/28336
Nivel de acceso:acceso abierto
Materia:modelo de mundo
modelo de lenguaje
inteligencia artificial
diversidad léxica
densidad léxica
world model
language model
artificial intelligence
lexical diversity
lexical density
modelo mundial
modelo linguístico
inteligência artificial
diversidade lexical
densidade lexical
Descripción
Sumario:Artificial intelligence (AI) has transformed numerous fields, including linguistics. Large Language Models (LLMs) have revolutionized interaction with text by providing responses that mimic human language. These models not only generate text, but also reflect their interpretation of the world. However, these models' understanding of the world is limited, which has led to the proposal of developing Large World Models (LWMs), which integrate textual, visual, and auditory data for a more complete understanding. This article employs a lexicostatistical perspective to analyze how LLMs articulate responses based on their world models. A comparative quasi-experimental design was utilized to evaluate six different LLMs. The methodology focused on measuring the diversity and lexical density of the texts generated by these models. The results demonstrated that ChatGPT-4 has high lexical density and moderate lexical diversity, while Copilot has the highest lexical diversity but lower lexical density. This analysis is of great importance for understanding  the capabilities and limitations of LLMs, with implications for their applications in various areas. The concepts and methodology are presented, the findings are discussed , and the paper concludes with reflections  on future research and practical applications.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).