Integración de embeddings de nueva generación y recursos lingüísticos actuales para identificar palabras complejas en español con machine learning
Descripción del Articulo
The complexity of words can pose a limitation to the accessibility of information, which could affect millions of Spanish-speaking people. The objective of this study is to develop a machine learning model for the binary task of identifying complex words in Spanish, using next-generation embeddings,...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Nacional Mayor de San Marcos |
| Repositorio: | Revistas - Universidad Nacional Mayor de San Marcos |
| Lenguaje: | español |
| OAI Identifier: | oai:revistasinvestigacion.unmsm.edu.pe:article/29211 |
| Enlace del recurso: | https://revistasinvestigacion.unmsm.edu.pe/index.php/rpcsis/article/view/29211 |
| Nivel de acceso: | acceso abierto |
| Materia: | Complex word identification Embeddings Lexical Simplification Spanish Identificación de palabras complejas Simplificación Léxica Español |
| Sumario: | The complexity of words can pose a limitation to the accessibility of information, which could affect millions of Spanish-speaking people. The objective of this study is to develop a machine learning model for the binary task of identifying complex words in Spanish, using next-generation embeddings, current linguistic resources, and lexical properties. To this end, the Spanish dataset from the CWI Shared Task 2018 was used, obtaining embeddings generated by the text-embedding-3-large model and word frequencies extracted from resources such as the Corpus del Español del Siglo XXI, the Corpus de Referencia del Español Actual, the Spanish Billion Word Corpus and Embeddings, and Wordfreq. To select features and find their best combination, a 5-fold cross-validation using XGBClassifier was employed. After comparing several machine learning algorithms, the final model, based on LGBMClassifier, achieved a macro F1 score of 0.7993, surpassing the best team from that competition, more recent studies that used neural networks, and some large language models. This demonstrates the potential of these resources that are constantly being updated and that can contribute to improving the accuracy of this task. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).