Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy

Descripción del Articulo

At present, the use of solar energy applications is booming worldwide, particularly in Argentina, through the RENOVAR program. Therefore, an analysis of the solar resource is required for the purposes of a possible installation of a Photovoltaic Solar Plant. When the sun's rays reach the surfac...

Descripción completa

Detalles Bibliográficos
Autores: Sarabia, Cristian Daniel, Reyna, Flavio Marcelo, González, José Antonio
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional de Ingeniería
Repositorio:Revistas - Universidad Nacional de Ingeniería
Lenguaje:español
OAI Identifier:oai:oai:revistas.uni.edu.pe:article/856
Enlace del recurso:https://revistas.uni.edu.pe/index.php/tecnia/article/view/856
Nivel de acceso:acceso abierto
Materia:Turbidez
β de Ångström
El Rosal Salta
Turbidity
β of Ångström
id REVUNI_c103e7fc78620849092fcb659dc879d1
oai_identifier_str oai:oai:revistas.uni.edu.pe:article/856
network_acronym_str REVUNI
network_name_str Revistas - Universidad Nacional de Ingeniería
repository_id_str
dc.title.none.fl_str_mv Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy
Estimación de coeficiente de turbidez en El Rosal Salta, Argentina a través de modelo de simulación SMART 2.9.: Colaboración con el XXIII Simposio Peruano de Energía Solar
title Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy
spellingShingle Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy
Sarabia, Cristian Daniel
Turbidez
β de Ångström
El Rosal Salta
Turbidity
β of Ångström
El Rosal Salta
title_short Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy
title_full Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy
title_fullStr Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy
title_full_unstemmed Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy
title_sort Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar Energy
dc.creator.none.fl_str_mv Sarabia, Cristian Daniel
Reyna, Flavio Marcelo
González, José Antonio
author Sarabia, Cristian Daniel
author_facet Sarabia, Cristian Daniel
Reyna, Flavio Marcelo
González, José Antonio
author_role author
author2 Reyna, Flavio Marcelo
González, José Antonio
author2_role author
author
dc.subject.none.fl_str_mv Turbidez
β de Ångström
El Rosal Salta
Turbidity
β of Ångström
El Rosal Salta
topic Turbidez
β de Ångström
El Rosal Salta
Turbidity
β of Ångström
El Rosal Salta
description At present, the use of solar energy applications is booming worldwide, particularly in Argentina, through the RENOVAR program. Therefore, an analysis of the solar resource is required for the purposes of a possible installation of a Photovoltaic Solar Plant. When the sun's rays reach the surface of the earth, certain obstacles are found in its path that tend to decrease the incident solar energy. In the atmosphere, there are gases and aerosols, such as atmospheric dust (volcanic ash, very fine earth, soot, etc ...) that cause solar attenuation. There are techniques to determine the available solar resource of a site, however, sometimes it is not applicable due to lack of adequate measuring equipment, whether for economic reasons, transfer, etc. Therefore, in this paper we want to show that knowing certain measured quantities directly and that are related to solar energy such as Normal Direct Irradiance (DNI), and using a simulation model such as SMART 2.9, the coefficient can be estimated of turbidity of Ångström, β, what will be the indicator of the optical thickness of the aerosols and consequently of the decrease of the solar power. To achieve the objective proposed in the previous paragraph, it was decided to work on a place in Argentina, called El Rosal, located in the municipality of Campo Quijano and in the place called “Quebrada del Toro”, which descends from the eastern face from the Puna de Atacama. It is located 3355 meters above sea level. The choice of this place was made, not only because it is a site of height in the province of Salta, but also because of the availability of DNI data measured with a pyrometer for three different times.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/856
10.21754/tecnia.v30i1.856
url https://revistas.uni.edu.pe/index.php/tecnia/article/view/856
identifier_str_mv 10.21754/tecnia.v30i1.856
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uni.edu.pe/index.php/tecnia/article/view/856/1303
https://revistas.uni.edu.pe/index.php/tecnia/article/view/856/1331
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/xml
dc.publisher.none.fl_str_mv Universidad Nacional de Ingeniería
publisher.none.fl_str_mv Universidad Nacional de Ingeniería
dc.source.none.fl_str_mv TECNIA; Vol. 30 No. 1 (2020); 98-106
TECNIA; Vol. 30 Núm. 1 (2020); 98-106
2309-0413
0375-7765
10.21754/tecnia.v30i1
reponame:Revistas - Universidad Nacional de Ingeniería
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str Revistas - Universidad Nacional de Ingeniería
collection Revistas - Universidad Nacional de Ingeniería
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1833562779454275584
spelling Estimation of turbidity coefficient in Rosal Salta, Argentina through SMART simulation model 2.9.: Collaboration with the XXIII Peruvian Symposium on Solar EnergyEstimación de coeficiente de turbidez en El Rosal Salta, Argentina a través de modelo de simulación SMART 2.9.: Colaboración con el XXIII Simposio Peruano de Energía SolarSarabia, Cristian DanielReyna, Flavio MarceloGonzález, José AntonioTurbidezβ de ÅngströmEl Rosal SaltaTurbidityβ of ÅngströmEl Rosal SaltaAt present, the use of solar energy applications is booming worldwide, particularly in Argentina, through the RENOVAR program. Therefore, an analysis of the solar resource is required for the purposes of a possible installation of a Photovoltaic Solar Plant. When the sun's rays reach the surface of the earth, certain obstacles are found in its path that tend to decrease the incident solar energy. In the atmosphere, there are gases and aerosols, such as atmospheric dust (volcanic ash, very fine earth, soot, etc ...) that cause solar attenuation. There are techniques to determine the available solar resource of a site, however, sometimes it is not applicable due to lack of adequate measuring equipment, whether for economic reasons, transfer, etc. Therefore, in this paper we want to show that knowing certain measured quantities directly and that are related to solar energy such as Normal Direct Irradiance (DNI), and using a simulation model such as SMART 2.9, the coefficient can be estimated of turbidity of Ångström, β, what will be the indicator of the optical thickness of the aerosols and consequently of the decrease of the solar power. To achieve the objective proposed in the previous paragraph, it was decided to work on a place in Argentina, called El Rosal, located in the municipality of Campo Quijano and in the place called “Quebrada del Toro”, which descends from the eastern face from the Puna de Atacama. It is located 3355 meters above sea level. The choice of this place was made, not only because it is a site of height in the province of Salta, but also because of the availability of DNI data measured with a pyrometer for three different times.En la actualidad, el uso de la energía solar está en auge a nivel mundial, y en Argentina, a través del programa RENOVAR. Por lo tanto, se requiere un análisis del recurso a los efectos de una posible instalación de una Planta Solar Fotovoltaica. Cuando los rayos solares alcanzan a la superficie terrestre se encuentran ciertos obstáculos que tienden a disminuir la energía solar incidente. En la atmósfera, se encuentran gases y aerosoles que ocasionan la atenuación solar. Existen técnicas para determinar el recurso solar disponible de un sitio, sin embargo, a veces no es aplicable por falta de equipos de medición adecuados, ya sea por razones económicas, de traslado, etc. En este trabajo se muestra que conociendo magnitudes medidas directamente, relacionadas con la energía solar como la Irradiancia Directa Normal (DNI), y haciendo uso de un modelo de simulación como el SMART 2.9 se consigue estimar el coeficiente de turbidez de Ångström (β), que indica el espesor óptico de los aerosoles y por consiguiente, la disminución de la potencia solar. Para conseguir el objetivo propuesto se decidió trabajar sobre un sitio de la Argentina, llamado El Rosal, ubicado en el municipio de Campo Quijano y en el paraje que lleva por nombre “Quebrada del Toro” y se encuentra ubicado a 3355 msnm. Se eligió este lugar, no solo por ser un sitio de altura en la provincia de Salta, sino también por el hecho de disponer de datos de DNI medidos con un pirheliómetro para tres épocas diferentes.Universidad Nacional de Ingeniería2020-05-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/xmlhttps://revistas.uni.edu.pe/index.php/tecnia/article/view/85610.21754/tecnia.v30i1.856TECNIA; Vol. 30 No. 1 (2020); 98-106TECNIA; Vol. 30 Núm. 1 (2020); 98-1062309-04130375-776510.21754/tecnia.v30i1reponame:Revistas - Universidad Nacional de Ingenieríainstname:Universidad Nacional de Ingenieríainstacron:UNIspahttps://revistas.uni.edu.pe/index.php/tecnia/article/view/856/1303https://revistas.uni.edu.pe/index.php/tecnia/article/view/856/1331info:eu-repo/semantics/openAccessoai:oai:revistas.uni.edu.pe:article/8562023-08-04T17:16:37Z
score 13.888049
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).