Bivariant K-theory of locally convex Z-graded algebras
Descripción del Articulo
In the present work, we describe some results about the K-theory of Z-graded algebras. First, in the context of C* algebras, we begin with the Pimsner-Voiculescu sequence for crossed products and its generalizations. We will see that there are results analog to these in the context of locally convex...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/4500 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4500 |
Nivel de acceso: | acceso abierto |
Materia: | K-teoría álgebras Z-graduadas álgebras localmente convexas álgebras de Weyl generalizadas K-theory Z-graded algebras locally convex algebras generalized Weyl algebras |
Sumario: | In the present work, we describe some results about the K-theory of Z-graded algebras. First, in the context of C* algebras, we begin with the Pimsner-Voiculescu sequence for crossed products and its generalizations. We will see that there are results analog to these in the context of locally convex algebras and we conclude with results for generalized Weyl algebras. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).