Well-posedness for a Third-Order PDE with Dissipation

Descripción del Articulo

In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based...

Descripción completa

Detalles Bibliográficos
Autor: Santiago Ayala, Yolanda Silvia
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/7084
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084
Nivel de acceso:acceso abierto
Materia:Semigroups theory
third-order equation
dissipative property of problem
nth order equation
Periodic Sobolev spaces
Fourier Theory
id REVUNITRU_e07e65f53318313c18b9d5f383000e09
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/7084
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Well-posedness for a Third-Order PDE with DissipationSantiago Ayala, Yolanda SilviaSemigroups theorythird-order equationdissipative property of problemnth order equationPeriodic Sobolev spacesFourier TheorySemigroups theorythird-order equationdissipative property of problemnth order equationPeriodic Sobolev spacesFourier TheoryIn this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend our results to equations of arbitrary nth order.In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend our results to equations of arbitrary nth order.National University of Trujillo - Academic Department of Mathematics2025-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 288 - 308Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 288 - 308Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 288 - 3082411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084/7106https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/70842025-12-27T01:09:48Z
dc.title.none.fl_str_mv Well-posedness for a Third-Order PDE with Dissipation
title Well-posedness for a Third-Order PDE with Dissipation
spellingShingle Well-posedness for a Third-Order PDE with Dissipation
Santiago Ayala, Yolanda Silvia
Semigroups theory
third-order equation
dissipative property of problem
nth order equation
Periodic Sobolev spaces
Fourier Theory
Semigroups theory
third-order equation
dissipative property of problem
nth order equation
Periodic Sobolev spaces
Fourier Theory
title_short Well-posedness for a Third-Order PDE with Dissipation
title_full Well-posedness for a Third-Order PDE with Dissipation
title_fullStr Well-posedness for a Third-Order PDE with Dissipation
title_full_unstemmed Well-posedness for a Third-Order PDE with Dissipation
title_sort Well-posedness for a Third-Order PDE with Dissipation
dc.creator.none.fl_str_mv Santiago Ayala, Yolanda Silvia
author Santiago Ayala, Yolanda Silvia
author_facet Santiago Ayala, Yolanda Silvia
author_role author
dc.subject.none.fl_str_mv Semigroups theory
third-order equation
dissipative property of problem
nth order equation
Periodic Sobolev spaces
Fourier Theory
Semigroups theory
third-order equation
dissipative property of problem
nth order equation
Periodic Sobolev spaces
Fourier Theory
topic Semigroups theory
third-order equation
dissipative property of problem
nth order equation
Periodic Sobolev spaces
Fourier Theory
Semigroups theory
third-order equation
dissipative property of problem
nth order equation
Periodic Sobolev spaces
Fourier Theory
description In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend our results to equations of arbitrary nth order.
publishDate 2025
dc.date.none.fl_str_mv 2025-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084/7106
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 288 - 308
Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 288 - 308
Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 288 - 308
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1853497091778674688
score 13.443157
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).