Well-posedness for a Third-Order PDE with Dissipation
Descripción del Articulo
In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/7084 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084 |
| Nivel de acceso: | acceso abierto |
| Materia: | Semigroups theory third-order equation dissipative property of problem nth order equation Periodic Sobolev spaces Fourier Theory |
| id |
REVUNITRU_e07e65f53318313c18b9d5f383000e09 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/7084 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Well-posedness for a Third-Order PDE with DissipationSantiago Ayala, Yolanda SilviaSemigroups theorythird-order equationdissipative property of problemnth order equationPeriodic Sobolev spacesFourier TheorySemigroups theorythird-order equationdissipative property of problemnth order equationPeriodic Sobolev spacesFourier TheoryIn this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend our results to equations of arbitrary nth order.In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend our results to equations of arbitrary nth order.National University of Trujillo - Academic Department of Mathematics2025-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 288 - 308Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 288 - 308Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 288 - 3082411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084/7106https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/70842025-12-27T01:09:48Z |
| dc.title.none.fl_str_mv |
Well-posedness for a Third-Order PDE with Dissipation |
| title |
Well-posedness for a Third-Order PDE with Dissipation |
| spellingShingle |
Well-posedness for a Third-Order PDE with Dissipation Santiago Ayala, Yolanda Silvia Semigroups theory third-order equation dissipative property of problem nth order equation Periodic Sobolev spaces Fourier Theory Semigroups theory third-order equation dissipative property of problem nth order equation Periodic Sobolev spaces Fourier Theory |
| title_short |
Well-posedness for a Third-Order PDE with Dissipation |
| title_full |
Well-posedness for a Third-Order PDE with Dissipation |
| title_fullStr |
Well-posedness for a Third-Order PDE with Dissipation |
| title_full_unstemmed |
Well-posedness for a Third-Order PDE with Dissipation |
| title_sort |
Well-posedness for a Third-Order PDE with Dissipation |
| dc.creator.none.fl_str_mv |
Santiago Ayala, Yolanda Silvia |
| author |
Santiago Ayala, Yolanda Silvia |
| author_facet |
Santiago Ayala, Yolanda Silvia |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Semigroups theory third-order equation dissipative property of problem nth order equation Periodic Sobolev spaces Fourier Theory Semigroups theory third-order equation dissipative property of problem nth order equation Periodic Sobolev spaces Fourier Theory |
| topic |
Semigroups theory third-order equation dissipative property of problem nth order equation Periodic Sobolev spaces Fourier Theory Semigroups theory third-order equation dissipative property of problem nth order equation Periodic Sobolev spaces Fourier Theory |
| description |
In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend our results to equations of arbitrary nth order. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084/7106 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 288 - 308 Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 288 - 308 Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 288 - 308 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1853497091778674688 |
| score |
13.443157 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).