Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography

Descripción del Articulo

The duality theory of convex analysis is applied to the complete electrode model (CEM), which is a standard model in electrical impedance tomography (EIT). This results in a dual formulation of the CEM and a general error estimate. This new formulation of the CEM is written in terms of current field...

Descripción completa

Detalles Bibliográficos
Autor: Díaz-Avalos, Josué D.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5283
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5283
Nivel de acceso:acceso abierto
Materia:Electrical impedance tomography
duality theory
complete electrode model
direct problem
id REVUNITRU_c2598755e58aada25216eefd800f9689
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5283
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomographyDíaz-Avalos, Josué D.Electrical impedance tomographyduality theorycomplete electrode modeldirect problemThe duality theory of convex analysis is applied to the complete electrode model (CEM), which is a standard model in electrical impedance tomography (EIT). This results in a dual formulation of the CEM and a general error estimate. This new formulation of the CEM is written in terms of current fields and is shown to have a unique solution. Using this formulation, the general error estimate is proved, from which two a posteriori error estimates and a well known asymptotic result on CEM solutions are obtained. The first a posteriori error estimate assesses the accuracy of solutions to approximate problems, and the second one assesses the accuracy of approximate solutions. Numerical tests to apply this second estimate are performed, employing the finite element method to obtain approximate solutions.National University of Trujillo - Academic Department of Mathematics2023-06-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5283Selecciones Matemáticas; Vol. 10 No. 01 (2023): Special Issue; 90 - 101Selecciones Matemáticas; Vol. 10 Núm. 01 (2023): Special Issue; 90 - 101Selecciones Matemáticas; v. 10 n. 01 (2023): Special Issue; 90 - 1012411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5283/5451https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/52832023-06-20T21:59:24Z
dc.title.none.fl_str_mv Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography
title Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography
spellingShingle Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography
Díaz-Avalos, Josué D.
Electrical impedance tomography
duality theory
complete electrode model
direct problem
title_short Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography
title_full Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography
title_fullStr Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography
title_full_unstemmed Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography
title_sort Applications of the duality theory of convex analysis to the complete electrode model of electrical impedance tomography
dc.creator.none.fl_str_mv Díaz-Avalos, Josué D.
author Díaz-Avalos, Josué D.
author_facet Díaz-Avalos, Josué D.
author_role author
dc.subject.none.fl_str_mv Electrical impedance tomography
duality theory
complete electrode model
direct problem
topic Electrical impedance tomography
duality theory
complete electrode model
direct problem
description The duality theory of convex analysis is applied to the complete electrode model (CEM), which is a standard model in electrical impedance tomography (EIT). This results in a dual formulation of the CEM and a general error estimate. This new formulation of the CEM is written in terms of current fields and is shown to have a unique solution. Using this formulation, the general error estimate is proved, from which two a posteriori error estimates and a well known asymptotic result on CEM solutions are obtained. The first a posteriori error estimate assesses the accuracy of solutions to approximate problems, and the second one assesses the accuracy of approximate solutions. Numerical tests to apply this second estimate are performed, employing the finite element method to obtain approximate solutions.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-14
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5283
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5283
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5283/5451
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 10 No. 01 (2023): Special Issue; 90 - 101
Selecciones Matemáticas; Vol. 10 Núm. 01 (2023): Special Issue; 90 - 101
Selecciones Matemáticas; v. 10 n. 01 (2023): Special Issue; 90 - 101
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845886946822324224
score 13.377112
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).