A Segmented SIR-D Mathematical Model for Coronavirus Propagation Dynamics (COVID-19) in Peru

Descripción del Articulo

The present study proposes the use of a segmented SIR-D mathematical model to predict the evolution of epidemiological populations of interest in the COVID-19 pandemic (Susceptible [S], Infected [I], Recovered [R] and dead [D]), information that is often key to guiding decision-making in the fight a...

Descripción completa

Detalles Bibliográficos
Autores: Pino Romero, Neisser, Soto-Becerra, Percy, Quispe Mendizábal, Ricardo Angelo
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/2970
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2970
Nivel de acceso:acceso abierto
Materia:Coronavirus (Covid-19)
Epidemiology
Ordinary Differential Equations
Computational Simulation
Regression Methods
Coronavirus (COVID-19)
Epidemiología
Ecuaciones Diferenciales Ordinarias
Simulación Computacional
Métodos de Regresión
Descripción
Sumario:The present study proposes the use of a segmented SIR-D mathematical model to predict the evolution of epidemiological populations of interest in the COVID-19 pandemic (Susceptible [S], Infected [I], Recovered [R] and dead [D]), information that is often key to guiding decision-making in the fight against epidemics. In order to obtain a better model calibration and a lower prediction error in the short term, we performed the model segmentation in 6 stages of periods of 14 days each. At each stage, the epidemiological  that define the system of equations are empirically estimated by linear regression of the epidemiological surveillance data that the Peruvian Ministry of Health collects and reports daily. This strategy showed better model calibration compared to an unsegmented SIR-D model.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).