Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels

Descripción del Articulo

The article explores the use of convolutional neural networks, specifically ResNet-50, to detect weevils in corn kernels. Weevils are a major pest of stored maize and can cause significant yield and quality losses. The study found that the ResNet-50 model was able to distinguish with high precision...

Descripción completa

Detalles Bibliográficos
Autores: Analuisa Aroca, Iván Alberto, Vergara-Romero, Arnaldo, Pérez Almeida, Iris Betzaida
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/4891
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4891
Nivel de acceso:acceso abierto
Materia:Gorgojo
maíz
redes neuronales convolucionales
Ecuador
Weevil
corn
convolutional neural networks
Gorgulho, milho, redes neurais convolucionais, Equador.
id REVUNITRU_942595269481c0cfb11a2c92c699f3b9
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/4891
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
dc.title.none.fl_str_mv Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
Las Redes neuronales convolucionales ResNet-50 para la detección de gorgojo en granos de maíz
Las Redes neurais convolucionais ResNet-50 para detecção de gorgulhos em grãos de milho
title Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
spellingShingle Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
Analuisa Aroca, Iván Alberto
Gorgojo
maíz
redes neuronales convolucionales
Ecuador
Weevil
corn
convolutional neural networks
Ecuador
Gorgulho, milho, redes neurais convolucionais, Equador.
title_short Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
title_full Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
title_fullStr Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
title_full_unstemmed Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
title_sort Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels
dc.creator.none.fl_str_mv Analuisa Aroca, Iván Alberto
Vergara-Romero, Arnaldo
Pérez Almeida, Iris Betzaida
author Analuisa Aroca, Iván Alberto
author_facet Analuisa Aroca, Iván Alberto
Vergara-Romero, Arnaldo
Pérez Almeida, Iris Betzaida
author_role author
author2 Vergara-Romero, Arnaldo
Pérez Almeida, Iris Betzaida
author2_role author
author
dc.subject.none.fl_str_mv Gorgojo
maíz
redes neuronales convolucionales
Ecuador
Weevil
corn
convolutional neural networks
Ecuador
Gorgulho, milho, redes neurais convolucionais, Equador.
topic Gorgojo
maíz
redes neuronales convolucionales
Ecuador
Weevil
corn
convolutional neural networks
Ecuador
Gorgulho, milho, redes neurais convolucionais, Equador.
description The article explores the use of convolutional neural networks, specifically ResNet-50, to detect weevils in corn kernels. Weevils are a major pest of stored maize and can cause significant yield and quality losses. The study found that the ResNet-50 model was able to distinguish with high precision between weevil-infested corn kernels and healthy kernels, achieving values ​​of 0.9464 for precision, 0.9310 for sensitivity, 0.9630 for specificity, 0.9469 for quality index, 0.9470 for the area under the curve (AUC) and 0.9474 for the F-score. The model was able to recognize nine out of ten weevil-free corn kernels using a minimal number of training samples. These results demonstrate the efficiency of the model in the accurate detection of weevil infestation in maize grains. The model's ability to accurately identify weevil-affected grains is critical to taking rapid action to control the spread of the pest, which can prevent significant economic losses and preserve the quality of stored corn. Research suggests that the use of ResNet-50 offers an efficient and low-cost solution for the early detection of weevil infestation in corn kernels. These models can quickly process large amounts of imaging data and perform accurate analysis, making it easy to identify affected grains.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4891
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4891
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4891/6724
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4891/5627
dc.rights.none.fl_str_mv Derechos de autor 2023 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Scientia Agropecuaria
https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 14 Núm. 3 (2023): julio-septiembre; 385-394
Scientia Agropecuaria; Vol. 14 No. 3 (2023): julio-septiembre; 385-394
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846521097684516864
spelling Las Convolutional neural networks ResNet-50 for weevil detection in corn kernels Las Redes neuronales convolucionales ResNet-50 para la detección de gorgojo en granos de maízLas Redes neurais convolucionais ResNet-50 para detecção de gorgulhos em grãos de milhoAnaluisa Aroca, Iván AlbertoVergara-Romero, Arnaldo Pérez Almeida, Iris Betzaida Gorgojomaízredes neuronales convolucionalesEcuadorWeevilcornconvolutional neural networksEcuadorGorgulho, milho, redes neurais convolucionais, Equador.The article explores the use of convolutional neural networks, specifically ResNet-50, to detect weevils in corn kernels. Weevils are a major pest of stored maize and can cause significant yield and quality losses. The study found that the ResNet-50 model was able to distinguish with high precision between weevil-infested corn kernels and healthy kernels, achieving values ​​of 0.9464 for precision, 0.9310 for sensitivity, 0.9630 for specificity, 0.9469 for quality index, 0.9470 for the area under the curve (AUC) and 0.9474 for the F-score. The model was able to recognize nine out of ten weevil-free corn kernels using a minimal number of training samples. These results demonstrate the efficiency of the model in the accurate detection of weevil infestation in maize grains. The model's ability to accurately identify weevil-affected grains is critical to taking rapid action to control the spread of the pest, which can prevent significant economic losses and preserve the quality of stored corn. Research suggests that the use of ResNet-50 offers an efficient and low-cost solution for the early detection of weevil infestation in corn kernels. These models can quickly process large amounts of imaging data and perform accurate analysis, making it easy to identify affected grains.El artículo explora el uso de redes neuronales convolucionales, específicamente ResNet-50, para detectar gorgojos en granos de maíz. Los gorgojos son una plaga importante en el maíz almacenado y pueden causar pérdidas significativas en rendimiento y calidad. El estudio encontró que el modelo ResNet-50 fue capaz de distinguir con alta precisión entre granos de maíz infestados por gorgojos y granos sanos, logrando valores de 0.9464 para precisión, 0.9310 para sensibilidad, 0.9630 para especificidad, 0.9469 para el índice de calidad, 0.9470 para el área bajo la curva (AUC) y 0.9474 para el F-score. El modelo fue capaz de reconocer nueve de cada diez granos de maíz libres de gorgojos utilizando un número mínimo de muestras de entrenamiento. Estos resultados demuestran la eficacia del modelo en la detección precisa de la infestación por gorgojos en los granos de maíz. La capacidad del modelo para identificar con precisión los granos afectados por gorgojos es crucial para tomar medidas rápidas y controlar la propagación de la plaga, lo que puede prevenir pérdidas económicas considerables y preservar la calidad del maíz almacenado. La investigación sugiere que el uso de ResNet-50, ofrece una solución eficiente y de bajo costo para la detección temprana de la infestación por gorgojos en los granos de maíz. Estos modelos pueden procesar rápidamente grandes cantidades de datos de imágenes y realizar análisis precisos, lo que facilita la identificación de granos afectados.No campo da informação agrícola, a conservação e o diagnóstico precoce de doenças dos grãos de milho são desejáveis. As causas de danos por agentes externos são um problema no setor agrícola. Na detecção de pragas e redução dos efeitos sobre os grãos, o aprendizado profundo dentro da inteligência artificial (IA) é usado no controle de qualidade dos grãos, ajudando a fazer análises de produção para a tomada de decisões. As imagens são utilizadas para classificar diferentes grãos de milho, identificando aqueles danificados por gorgulhos ou outras pragas. Neste documento, um modelo de rede convolucional é proposto com base na aprendizagem do reconhecimento de padrões na presença de grãos associados a danos do gorgulho no grão. Resultados satisfatórios são obtidos com taxas de precisão de 100% (amostra de treinamento), 97% (amostra de validação) e 98% (conjunto de testes). A precisão, sensibilidade, especificidade, índice de qualidade, AUC e F-score da ResNet-50 foram 0,9464, 0,9310, 0,9630, 0,9469, 0,9470 e 0,9474 respectivamente. As principais conclusões mostram que os parâmetros do modelo melhorado são significativos, o reconhecimento do gorgulho em grãos com o modelo tem uma precisão de identificação significativa. Os agentes econômicos da cadeia de valor dão mais importância às relações comerciais com clientes e fornecedores do que à qualidade e preservação dos grãos atualmente importantes para a competitividade.Universidad Nacional de Trujillo2023-09-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4891Scientia Agropecuaria; Vol. 14 Núm. 3 (2023): julio-septiembre; 385-394Scientia Agropecuaria; Vol. 14 No. 3 (2023): julio-septiembre; 385-3942306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4891/6724https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/4891/5627Derechos de autor 2023 Scientia Agropecuariahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/48912023-08-11T14:06:31Z
score 12.884314
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).