Classification of abelian groups finitely generated and applications
Descripción del Articulo
In this work we establishe relations between modules over a ring and vector spaces, we show results of linear algebra that can be extended to modules and we present counterexamples to those ones that cannot be extended. By identify abelian groups with Z-modules we classify every the finitely generat...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | portugués |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/4858 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4858 |
| Nivel de acceso: | acceso abierto |
| Materia: | Modules vector spaces abelian groups ciclic decomposition Módulos espaços vetoriais grupos abelianos decomposição cíclica |
| id |
REVUNITRU_918cd439de96a2e4056068e184085014 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/4858 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Classification of abelian groups finitely generated and applicationsClasificación de grupos abelianos finitamente generados y algunas aplicacionesClasificacão de grupos abelianos finitamente gerados e algumas aplicacõesValéria de Jesus, Elisangela Leal Fontes , Aislan Mejía Alemán, Carlos Modulesvector spacesabelian groupsciclic decompositionMódulosespaços vetoriaisgrupos abelianosdecomposição cíclicaIn this work we establishe relations between modules over a ring and vector spaces, we show results of linear algebra that can be extended to modules and we present counterexamples to those ones that cannot be extended. By identify abelian groups with Z-modules we classify every the finitely generated abelian groups and we show a decomposition in direct sum of ciclic subgroups. Finally, we apply the results about finitely generated abelian groups to determine the rational canonical form of an endomorphis of finitely generated K[t]-modules and simplify the computer of associated numbers to the endomorphism, for example: therank and the determinant.Nesse trabalho estabelecemos relacoes entre módulos sobre um anel e espacos vetoriais, exibimos resultados de álgebra linear que podem ser estendidos para módulos e apresentamos contraexemplos para aqueles resultados que nao podem ser estendidos. Identificando grupos abelianos com Z-módulos, classificamos todos os grupos abelianos finitamente gerados e exibimos uma decomposicao em soma direta de subgrupos cíclicos. Finalmente, aplicamos os resultados acerca de grupos abelianos finitos para determinar a forma canonica racional de um endomorfismo de K[t]-módulos finitamente gerados e simplificar o cálculo de números associados ao endomorfismo, por exemplo: o posto e o determinante. National University of Trujillo - Academic Department of Mathematics2022-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/4858Selecciones Matemáticas; Vol. 9 No. 02 (2022): August - December; 323 - 335Selecciones Matemáticas; Vol. 9 Núm. 02 (2022): Agosto - Diciembre; 323 - 335Selecciones Matemáticas; v. 9 n. 02 (2022): Agosto - Dezembro; 323 - 3352411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUporhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/4858/5186Derechos de autor 2022 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/48582022-12-30T17:16:59Z |
| dc.title.none.fl_str_mv |
Classification of abelian groups finitely generated and applications Clasificación de grupos abelianos finitamente generados y algunas aplicaciones Clasificacão de grupos abelianos finitamente gerados e algumas aplicacões |
| title |
Classification of abelian groups finitely generated and applications |
| spellingShingle |
Classification of abelian groups finitely generated and applications Valéria de Jesus, Elisangela Modules vector spaces abelian groups ciclic decomposition Módulos espaços vetoriais grupos abelianos decomposição cíclica |
| title_short |
Classification of abelian groups finitely generated and applications |
| title_full |
Classification of abelian groups finitely generated and applications |
| title_fullStr |
Classification of abelian groups finitely generated and applications |
| title_full_unstemmed |
Classification of abelian groups finitely generated and applications |
| title_sort |
Classification of abelian groups finitely generated and applications |
| dc.creator.none.fl_str_mv |
Valéria de Jesus, Elisangela Leal Fontes , Aislan Mejía Alemán, Carlos |
| author |
Valéria de Jesus, Elisangela |
| author_facet |
Valéria de Jesus, Elisangela Leal Fontes , Aislan Mejía Alemán, Carlos |
| author_role |
author |
| author2 |
Leal Fontes , Aislan Mejía Alemán, Carlos |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Modules vector spaces abelian groups ciclic decomposition Módulos espaços vetoriais grupos abelianos decomposição cíclica |
| topic |
Modules vector spaces abelian groups ciclic decomposition Módulos espaços vetoriais grupos abelianos decomposição cíclica |
| description |
In this work we establishe relations between modules over a ring and vector spaces, we show results of linear algebra that can be extended to modules and we present counterexamples to those ones that cannot be extended. By identify abelian groups with Z-modules we classify every the finitely generated abelian groups and we show a decomposition in direct sum of ciclic subgroups. Finally, we apply the results about finitely generated abelian groups to determine the rational canonical form of an endomorphis of finitely generated K[t]-modules and simplify the computer of associated numbers to the endomorphism, for example: therank and the determinant. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-12-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4858 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4858 |
| dc.language.none.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4858/5186 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2022 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2022 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 9 No. 02 (2022): August - December; 323 - 335 Selecciones Matemáticas; Vol. 9 Núm. 02 (2022): Agosto - Diciembre; 323 - 335 Selecciones Matemáticas; v. 9 n. 02 (2022): Agosto - Dezembro; 323 - 335 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1847155316513308672 |
| score |
13.098973 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).