Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting

Descripción del Articulo

The Gompertz and logistic mathematical models in the Spirulina sp. growth kinetics were evaluated and were compared with a modeling through Backpropagation Artificial Neural Networks (BP- ANN). Spirulina was cultivated in a (3 L/min) of 500 mL aerated laboratory photobioreactor with 40W fluorescent...

Descripción completa

Detalles Bibliográficos
Autores: Vásquez-Villalobos, Víctor, Artega Gutiérrez, Paola, Chanamé Acevedo, Kattia, Esquivel Torres, Ana
Formato: artículo
Fecha de Publicación:2013
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/333
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/333
Nivel de acceso:acceso abierto
Materia:Gompertz model
logistic model
Spirulina
lighting on solid state-LED
Modelo de Gompertz
Modelo logístico
iluminación en estado sólido-LED
id REVUNITRU_85665b979afac871d87086d636f566bb
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/333
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lightingModelamiento matemático y por redes neuronales artificiales del crecimiento de Spirulina sp. en fotobiorreactor con fuente de luz fluorescente e iluminación en estado sólidoVásquez-Villalobos, VíctorArtega Gutiérrez, PaolaChanamé Acevedo, KattiaEsquivel Torres, AnaGompertz modellogistic modelSpirulinalighting on solid state-LEDModelo de GompertzModelo logísticoSpirulinailuminación en estado sólido-LEDThe Gompertz and logistic mathematical models in the Spirulina sp. growth kinetics were evaluated and were compared with a modeling through Backpropagation Artificial Neural Networks (BP- ANN). Spirulina was cultivated in a (3 L/min) of 500 mL aerated laboratory photobioreactor with 40W fluorescent lighting and 1W lighting Solid State (LED-Light Emitting Diode) obtaining 11.0 klx lighting with both systems. The LED lighting allowed to obtain a (ɑ) 0.90 high biomass value compared with that one obtained with fluorescent lighting of 0.82, as well as a greater growth rate μ=0.63 h-1 preceded by a shorter latency time λ = 0.34 h. The BP-ANN showed a good accuracy with respect to the Gompertz I corrected model for both the Spirulina sp cultivation case with fluorescent lighting and with LED displaying correlation coefficients (R) of the 0.993 and 0.994 order respectively, with regard to the experimental data. Spirulina modeling through the Gompertz I corrected model is advantageous because besides showing R 0.987 and 0.990 values in Spirulina sp. cultures with fluorescent lighting and with LED respectively, it allows to attain the growth parameters kinetics directly.Se evaluaron los modelos matemáticos de Gompertz y logístico en la cinética de crecimiento de Spirulina sp., los cuales fueron comparados con un modelamiento por Redes Neuronales Artificiales Backpropagation (RNA-BP). La Spirulina fue cultivada en un fotobiorreactor de laboratorio aireado (3 L/min) de 500 mL, con iluminación fluorescente de 40W y en Estado Sólido (LED-Light Emitting Diode ) de 1W; obteniendo con ambos sistemas 11,0 klx. La iluminación LED, permitió obtener un valor elevado de biomasa (ɑ) de 0,90 , en comparación con la obtenida con iluminación fluorescente de 0,82; así como una mayor velocidad de crecimiento μ=0,63 h-1 , precedida de un menor tiempo de latencia λ=0,34 h. La RNA-BP mostró buena precisión con respecto al modelo corregido de Gompertz I, tanto para el caso del cultivo de Spirulina sp. con iluminación fluorescente y con LED, mostrando coeficientes de correlación (R) del orden de 0,993 y 0,994 respectivamente, con respecto a los datos experimentales. Resulta ventajoso el modelamiento a través del modelo corregido de Gompertz I, porque además de valores de R de 0,987 y 0,990 en los cultivos de Spirulina sp. Con iluminación fluorescente y con LED respectivamente, permite obtener los parámetros de la cinética de crecimiento de manera directa.Universidad Nacional de Trujillo2013-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/333Scientia Agropecuaria; Vol. 4 Núm. 3 (2013): Julio - Septiembre; 199 - 209Scientia Agropecuaria; Vol. 4 No. 3 (2013): July - September; 199 - 2092306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/333/311Derechos de autor 2013 Scientia Agropecuariainfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/3332021-07-20T17:14:13Z
dc.title.none.fl_str_mv Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
Modelamiento matemático y por redes neuronales artificiales del crecimiento de Spirulina sp. en fotobiorreactor con fuente de luz fluorescente e iluminación en estado sólido
title Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
spellingShingle Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
Vásquez-Villalobos, Víctor
Gompertz model
logistic model
Spirulina
lighting on solid state-LED
Modelo de Gompertz
Modelo logístico
Spirulina
iluminación en estado sólido-LED
title_short Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
title_full Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
title_fullStr Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
title_full_unstemmed Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
title_sort Mathematical modeling and through artificial neural networks of the Spirulina sp. growth in a photobioreactor with fluorescent light source and solid state lighting
dc.creator.none.fl_str_mv Vásquez-Villalobos, Víctor
Artega Gutiérrez, Paola
Chanamé Acevedo, Kattia
Esquivel Torres, Ana
author Vásquez-Villalobos, Víctor
author_facet Vásquez-Villalobos, Víctor
Artega Gutiérrez, Paola
Chanamé Acevedo, Kattia
Esquivel Torres, Ana
author_role author
author2 Artega Gutiérrez, Paola
Chanamé Acevedo, Kattia
Esquivel Torres, Ana
author2_role author
author
author
dc.subject.none.fl_str_mv Gompertz model
logistic model
Spirulina
lighting on solid state-LED
Modelo de Gompertz
Modelo logístico
Spirulina
iluminación en estado sólido-LED
topic Gompertz model
logistic model
Spirulina
lighting on solid state-LED
Modelo de Gompertz
Modelo logístico
Spirulina
iluminación en estado sólido-LED
description The Gompertz and logistic mathematical models in the Spirulina sp. growth kinetics were evaluated and were compared with a modeling through Backpropagation Artificial Neural Networks (BP- ANN). Spirulina was cultivated in a (3 L/min) of 500 mL aerated laboratory photobioreactor with 40W fluorescent lighting and 1W lighting Solid State (LED-Light Emitting Diode) obtaining 11.0 klx lighting with both systems. The LED lighting allowed to obtain a (ɑ) 0.90 high biomass value compared with that one obtained with fluorescent lighting of 0.82, as well as a greater growth rate μ=0.63 h-1 preceded by a shorter latency time λ = 0.34 h. The BP-ANN showed a good accuracy with respect to the Gompertz I corrected model for both the Spirulina sp cultivation case with fluorescent lighting and with LED displaying correlation coefficients (R) of the 0.993 and 0.994 order respectively, with regard to the experimental data. Spirulina modeling through the Gompertz I corrected model is advantageous because besides showing R 0.987 and 0.990 values in Spirulina sp. cultures with fluorescent lighting and with LED respectively, it allows to attain the growth parameters kinetics directly.
publishDate 2013
dc.date.none.fl_str_mv 2013-10-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/333
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/333
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/333/311
dc.rights.none.fl_str_mv Derechos de autor 2013 Scientia Agropecuaria
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2013 Scientia Agropecuaria
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 4 Núm. 3 (2013): Julio - Septiembre; 199 - 209
Scientia Agropecuaria; Vol. 4 No. 3 (2013): July - September; 199 - 209
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847155275146985472
score 13.098175
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).