Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
Descripción del Articulo
We present method computes the tangent and curvature vector of the intersection curve of two surface, parametric/implicit or implicit/implicit, in Lorentz-Minkowski space E3, by applying a Euler-Rodrigues rotation to a vector projected onto the tangent space. The axis of rotation is the nor...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/7101 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101 |
| Nivel de acceso: | acceso abierto |
| Materia: | Euler-Rodrigues formula tangential intersection Lorentz-Minkowski space Surface-Surface intersection |
| id |
REVUNITRU_604608c272b3562c62a960ca7e142fa6 |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/7101 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski spaceEuler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski spaceAléssio, OsmarRamos Cintra Neto, Luiz AugustoEuler-Rodrigues formulatangential intersectionLorentz-Minkowski spaceSurface-Surface intersectionEuler-Rodrigues formulatangential intersectionLorentz-Minkowski spaceSurface-Surface intersectionWe present method computes the tangent and curvature vector of the intersection curve of two surface, parametric/implicit or implicit/implicit, in Lorentz-Minkowski space E3, by applying a Euler-Rodrigues rotation to a vector projected onto the tangent space. The axis of rotation is the normal vector of the surface (the surfaces can be timelike, spacelike or lightlike), therefore three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.We present method computes the tangent and curvature vector of the intersection curve of two surface, parametric/implicit or implicit/implicit, in Lorentz-Minkowski space E3, by applying a Euler-Rodrigues rotation to a vector projected onto the tangent space. The axis of rotation is the normal vector of the surface (the surfaces can be timelike, spacelike or lightlike), therefore three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.National University of Trujillo - Academic Department of Mathematics2025-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 439 - 468Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 439 - 468Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 439 - 4682411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101/7118https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/71012025-12-27T01:09:48Z |
| dc.title.none.fl_str_mv |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space |
| title |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space |
| spellingShingle |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space Aléssio, Osmar Euler-Rodrigues formula tangential intersection Lorentz-Minkowski space Surface-Surface intersection Euler-Rodrigues formula tangential intersection Lorentz-Minkowski space Surface-Surface intersection |
| title_short |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space |
| title_full |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space |
| title_fullStr |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space |
| title_full_unstemmed |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space |
| title_sort |
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space |
| dc.creator.none.fl_str_mv |
Aléssio, Osmar Ramos Cintra Neto, Luiz Augusto |
| author |
Aléssio, Osmar |
| author_facet |
Aléssio, Osmar Ramos Cintra Neto, Luiz Augusto |
| author_role |
author |
| author2 |
Ramos Cintra Neto, Luiz Augusto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Euler-Rodrigues formula tangential intersection Lorentz-Minkowski space Surface-Surface intersection Euler-Rodrigues formula tangential intersection Lorentz-Minkowski space Surface-Surface intersection |
| topic |
Euler-Rodrigues formula tangential intersection Lorentz-Minkowski space Surface-Surface intersection Euler-Rodrigues formula tangential intersection Lorentz-Minkowski space Surface-Surface intersection |
| description |
We present method computes the tangent and curvature vector of the intersection curve of two surface, parametric/implicit or implicit/implicit, in Lorentz-Minkowski space E3, by applying a Euler-Rodrigues rotation to a vector projected onto the tangent space. The axis of rotation is the normal vector of the surface (the surfaces can be timelike, spacelike or lightlike), therefore three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101/7118 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 439 - 468 Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 439 - 468 Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 439 - 468 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1853497092036624384 |
| score |
13.384696 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).