Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space

Descripción del Articulo

We present method computes the tangent and curvature vector of the intersection curve of two surface, parametric/implicit or implicit/implicit, in Lorentz-Minkowski space E3, by applying a Euler-Rodrigues rotation to a vector projected onto the tangent space. The axis of rotation is the nor...

Descripción completa

Detalles Bibliográficos
Autores: Aléssio, Osmar, Ramos Cintra Neto, Luiz Augusto
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/7101
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101
Nivel de acceso:acceso abierto
Materia:Euler-Rodrigues formula
tangential intersection
Lorentz-Minkowski space
Surface-Surface intersection
id REVUNITRU_604608c272b3562c62a960ca7e142fa6
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/7101
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski spaceEuler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski spaceAléssio, OsmarRamos Cintra Neto, Luiz AugustoEuler-Rodrigues formulatangential intersectionLorentz-Minkowski spaceSurface-Surface intersectionEuler-Rodrigues formulatangential intersectionLorentz-Minkowski spaceSurface-Surface intersectionWe present method computes the tangent and curvature vector of the intersection curve of two surface, parametric/implicit or implicit/implicit, in Lorentz-Minkowski space E3, by applying a Euler-Rodrigues rotation to a vector projected onto the tangent space. The axis of rotation is the normal vector of the surface (the surfaces can be timelike, spacelike or lightlike), therefore three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.We present method computes the tangent and curvature vector of the intersection curve of two surface, parametric/implicit or implicit/implicit, in Lorentz-Minkowski space E3, by applying a Euler-Rodrigues rotation to a vector projected onto the tangent space. The axis of rotation is the normal vector of the surface (the surfaces can be timelike, spacelike or lightlike), therefore three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.National University of Trujillo - Academic Department of Mathematics2025-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 439 - 468Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 439 - 468Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 439 - 4682411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101/7118https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/71012025-12-27T01:09:48Z
dc.title.none.fl_str_mv Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
title Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
spellingShingle Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
Aléssio, Osmar
Euler-Rodrigues formula
tangential intersection
Lorentz-Minkowski space
Surface-Surface intersection
Euler-Rodrigues formula
tangential intersection
Lorentz-Minkowski space
Surface-Surface intersection
title_short Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
title_full Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
title_fullStr Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
title_full_unstemmed Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
title_sort Euler-Rodrigues Rotation for computes the tangent vector and curvature vector of the intersection curve of two surface in 3D Lorentz-Minkowski space
dc.creator.none.fl_str_mv Aléssio, Osmar
Ramos Cintra Neto, Luiz Augusto
author Aléssio, Osmar
author_facet Aléssio, Osmar
Ramos Cintra Neto, Luiz Augusto
author_role author
author2 Ramos Cintra Neto, Luiz Augusto
author2_role author
dc.subject.none.fl_str_mv Euler-Rodrigues formula
tangential intersection
Lorentz-Minkowski space
Surface-Surface intersection
Euler-Rodrigues formula
tangential intersection
Lorentz-Minkowski space
Surface-Surface intersection
topic Euler-Rodrigues formula
tangential intersection
Lorentz-Minkowski space
Surface-Surface intersection
Euler-Rodrigues formula
tangential intersection
Lorentz-Minkowski space
Surface-Surface intersection
description We present method computes the tangent and curvature vector of the intersection curve of two surface, parametric/implicit or implicit/implicit, in Lorentz-Minkowski space E3, by applying a Euler-Rodrigues rotation to a vector projected onto the tangent space. The axis of rotation is the normal vector of the surface (the surfaces can be timelike, spacelike or lightlike), therefore three types of rotations, since the normal vectors can be: spacelike, lightlike, or timelike.
publishDate 2025
dc.date.none.fl_str_mv 2025-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7101/7118
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 12 No. 02 (2025): August - December; 439 - 468
Selecciones Matemáticas; Vol. 12 Núm. 02 (2025): Agosto - Diciembre; 439 - 468
Selecciones Matemáticas; v. 12 n. 02 (2025): Agosto - Dezembro; 439 - 468
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1853497092036624384
score 13.384696
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).