Frobenius methods for analytic second order linear partial differential equations
Descripción del Articulo
The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the method of Frobenius method for second order li...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Nacional de Trujillo |
| Repositorio: | Revistas - Universidad Nacional de Trujillo |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/5433 |
| Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433 |
| Nivel de acceso: | acceso abierto |
| Materia: | Frobenius method regular singularity analytic solutions partial differential equation |
| id |
REVUNITRU_52303efd4468960cef9e551b2be326ff |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/5433 |
| network_acronym_str |
REVUNITRU |
| network_name_str |
Revistas - Universidad Nacional de Trujillo |
| repository_id_str |
|
| spelling |
Frobenius methods for analytic second order linear partial differential equationsMartínez León, Víctor ArturoAzevedo Scárdua, Bruno CésarFrobenius methodregular singularityanalytic solutionspartial differential equationThe main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the method of Frobenius method for second order linear ordinary differential equations. We introduce a notion of Euler type partial differential equation. To such a PDE we associate an indicial conic, which is an affine plane curve of degree two. Then comes the concept of regular singularity and finally convergence theorems, which must necessarily take into account the type of PDE (parabolic, elliptical or hyperbolic) and a nonresonance condition. This condition gives a new geometric interpretation of the original condition between the roots of the original Frobenius theorem for second order ODEs. The interpretation is something like, a certain reticulate has or not vertices on the indexical conic. Finally, we retrieve the solution of all the classical PDEs by this method (heat diffusion, wave propagation and Laplace equation), and also increase the class of those that have explicit algorithmic solution to far beyond those admitting separable variables. The last part of the text is dedicated to the construction of PDE models for the classical ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different means. One model is based on the requirement that the restriction of the PDE to lines through the origin must be the classical ODE model. The second is based on the idea of having symmetries on the PDE model and imitating the ODE model. We study these PDEs and obtain their solutions, obtaining for the framework of PDEs some of the classical results, like existence of polynomial solutions (Laguerre, Hermite and Chebyshev polynomials).National University of Trujillo - Academic Department of Mathematics2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 210 - 248Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 210 - 248Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 210 - 2482411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433/5790Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/54332023-12-27T14:40:03Z |
| dc.title.none.fl_str_mv |
Frobenius methods for analytic second order linear partial differential equations |
| title |
Frobenius methods for analytic second order linear partial differential equations |
| spellingShingle |
Frobenius methods for analytic second order linear partial differential equations Martínez León, Víctor Arturo Frobenius method regular singularity analytic solutions partial differential equation |
| title_short |
Frobenius methods for analytic second order linear partial differential equations |
| title_full |
Frobenius methods for analytic second order linear partial differential equations |
| title_fullStr |
Frobenius methods for analytic second order linear partial differential equations |
| title_full_unstemmed |
Frobenius methods for analytic second order linear partial differential equations |
| title_sort |
Frobenius methods for analytic second order linear partial differential equations |
| dc.creator.none.fl_str_mv |
Martínez León, Víctor Arturo Azevedo Scárdua, Bruno César |
| author |
Martínez León, Víctor Arturo |
| author_facet |
Martínez León, Víctor Arturo Azevedo Scárdua, Bruno César |
| author_role |
author |
| author2 |
Azevedo Scárdua, Bruno César |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Frobenius method regular singularity analytic solutions partial differential equation |
| topic |
Frobenius method regular singularity analytic solutions partial differential equation |
| description |
The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the method of Frobenius method for second order linear ordinary differential equations. We introduce a notion of Euler type partial differential equation. To such a PDE we associate an indicial conic, which is an affine plane curve of degree two. Then comes the concept of regular singularity and finally convergence theorems, which must necessarily take into account the type of PDE (parabolic, elliptical or hyperbolic) and a nonresonance condition. This condition gives a new geometric interpretation of the original condition between the roots of the original Frobenius theorem for second order ODEs. The interpretation is something like, a certain reticulate has or not vertices on the indexical conic. Finally, we retrieve the solution of all the classical PDEs by this method (heat diffusion, wave propagation and Laplace equation), and also increase the class of those that have explicit algorithmic solution to far beyond those admitting separable variables. The last part of the text is dedicated to the construction of PDE models for the classical ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different means. One model is based on the requirement that the restriction of the PDE to lines through the origin must be the classical ODE model. The second is based on the idea of having symmetries on the PDE model and imitating the ODE model. We study these PDEs and obtain their solutions, obtaining for the framework of PDEs some of the classical results, like existence of polynomial solutions (Laguerre, Hermite and Chebyshev polynomials). |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-12-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433 |
| url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433/5790 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2023 Selecciones Matemáticas https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
| dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 210 - 248 Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 210 - 248 Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 210 - 248 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
| instname_str |
Universidad Nacional de Trujillo |
| instacron_str |
UNITRU |
| institution |
UNITRU |
| reponame_str |
Revistas - Universidad Nacional de Trujillo |
| collection |
Revistas - Universidad Nacional de Trujillo |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1847155317781037056 |
| score |
13.136109 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).