Frobenius methods for analytic second order linear partial differential equations

Descripción del Articulo

The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the method of Frobenius method for second order li...

Descripción completa

Detalles Bibliográficos
Autores: Martínez León, Víctor Arturo, Azevedo Scárdua, Bruno César
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/5433
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433
Nivel de acceso:acceso abierto
Materia:Frobenius method
regular singularity
analytic solutions
partial differential equation
id REVUNITRU_52303efd4468960cef9e551b2be326ff
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/5433
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Frobenius methods for analytic second order linear partial differential equationsMartínez León, Víctor ArturoAzevedo Scárdua, Bruno CésarFrobenius methodregular singularityanalytic solutionspartial differential equationThe main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the method of Frobenius method for second order linear ordinary differential equations. We introduce a notion of Euler type partial differential equation. To such a PDE we associate an indicial conic, which is an affine plane curve of degree two. Then comes the concept of regular singularity and finally convergence theorems, which must necessarily take into account the type of PDE (parabolic, elliptical or hyperbolic) and a nonresonance condition. This condition gives a new geometric interpretation of the original condition between the roots of the original Frobenius theorem for second order ODEs. The interpretation is something like, a certain reticulate has or not vertices on the indexical conic. Finally, we retrieve the solution of all the classical PDEs by this method (heat diffusion, wave propagation and Laplace equation), and also increase the class of those that have explicit algorithmic solution to far beyond those admitting separable variables. The last part of the text is dedicated to the construction of PDE models for the classical ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different means. One model is based on the requirement that the restriction of the PDE to lines through the origin must be the classical ODE model. The second is based on the idea of having symmetries on the PDE model and imitating the ODE model. We study these PDEs and obtain their solutions, obtaining for the framework of PDEs some of the classical results, like existence of polynomial solutions (Laguerre, Hermite and Chebyshev polynomials).National University of Trujillo - Academic Department of Mathematics2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 210 - 248Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 210 - 248Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 210 - 2482411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433/5790Derechos de autor 2023 Selecciones Matemáticashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/54332023-12-27T14:40:03Z
dc.title.none.fl_str_mv Frobenius methods for analytic second order linear partial differential equations
title Frobenius methods for analytic second order linear partial differential equations
spellingShingle Frobenius methods for analytic second order linear partial differential equations
Martínez León, Víctor Arturo
Frobenius method
regular singularity
analytic solutions
partial differential equation
title_short Frobenius methods for analytic second order linear partial differential equations
title_full Frobenius methods for analytic second order linear partial differential equations
title_fullStr Frobenius methods for analytic second order linear partial differential equations
title_full_unstemmed Frobenius methods for analytic second order linear partial differential equations
title_sort Frobenius methods for analytic second order linear partial differential equations
dc.creator.none.fl_str_mv Martínez León, Víctor Arturo
Azevedo Scárdua, Bruno César
author Martínez León, Víctor Arturo
author_facet Martínez León, Víctor Arturo
Azevedo Scárdua, Bruno César
author_role author
author2 Azevedo Scárdua, Bruno César
author2_role author
dc.subject.none.fl_str_mv Frobenius method
regular singularity
analytic solutions
partial differential equation
topic Frobenius method
regular singularity
analytic solutions
partial differential equation
description The main subject of this text is the study of analytic second order linear partial differential equations. We aim to solve the classical equations and some more, in the real or complex analytical case. This is done by introducing methods inspired by the method of Frobenius method for second order linear ordinary differential equations. We introduce a notion of Euler type partial differential equation. To such a PDE we associate an indicial conic, which is an affine plane curve of degree two. Then comes the concept of regular singularity and finally convergence theorems, which must necessarily take into account the type of PDE (parabolic, elliptical or hyperbolic) and a nonresonance condition. This condition gives a new geometric interpretation of the original condition between the roots of the original Frobenius theorem for second order ODEs. The interpretation is something like, a certain reticulate has or not vertices on the indexical conic. Finally, we retrieve the solution of all the classical PDEs by this method (heat diffusion, wave propagation and Laplace equation), and also increase the class of those that have explicit algorithmic solution to far beyond those admitting separable variables. The last part of the text is dedicated to the construction of PDE models for the classical ODEs like Airy, Legendre, Laguerre, Hermite and Chebyshev by two different means. One model is based on the requirement that the restriction of the PDE to lines through the origin must be the classical ODE model. The second is based on the idea of having symmetries on the PDE model and imitating the ODE model. We study these PDEs and obtain their solutions, obtaining for the framework of PDEs some of the classical results, like existence of polynomial solutions (Laguerre, Hermite and Chebyshev polynomials).
publishDate 2023
dc.date.none.fl_str_mv 2023-12-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/5433/5790
dc.rights.none.fl_str_mv Derechos de autor 2023 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Selecciones Matemáticas
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 10 No. 02 (2023): August - December; 210 - 248
Selecciones Matemáticas; Vol. 10 Núm. 02 (2023): Agosto - Diciembre; 210 - 248
Selecciones Matemáticas; v. 10 n. 02 (2023): Agosto - Dezembro; 210 - 248
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847155317781037056
score 13.136109
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).