Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
Descripción del Articulo
Seed and peel avocado (Persea Americana) are agro-industrial residues whose structure presents an important quantity of source of polyphenolic components which can be obtained by various extraction methods. Response surface methodology (RSM) and the artificial neural network (ANN) were used to model...
Autores: | , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | inglés |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/3295 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295 |
Nivel de acceso: | acceso abierto |
Materia: | Avocado residues ultrasound-assisted extraction phenolic components response surface methodology artificial neural network |
id |
REVUNITRU_1d7fc2dfb4ebb31197c761832953e8a4 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/3295 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networksMonzón, LisbethBecerra, Gabriela Aguirre, Elza Rodríguez, Gilbert Villanueva, Eudes Avocado residuesultrasound-assisted extractionphenolic componentsresponse surface methodologyartificial neural networkSeed and peel avocado (Persea Americana) are agro-industrial residues whose structure presents an important quantity of source of polyphenolic components which can be obtained by various extraction methods. Response surface methodology (RSM) and the artificial neural network (ANN) were used to model and optimize the conditions of ultrasound-assisted extraction (UAE) (25 W/L) with respect to temperature (40 - 60 °C), concentration of ethanol/water (30% - 60%) and extraction time (40 - 80 min) in obtaining phenolic from avocado residues. RSM and ANN allowed finding an optimal phenolic content for seeds (145.170 - 146.569 mg GAE/g; 49 °C, 41.2% and 65.5 - 65.1 min) and peels (124.050 - 125.187 mg GAE/g; 50.9 °C, 49.5% and 61.8 min). The models estimated between predicted and experimental values were significant (p < 0.05), presenting a high correlation (R2> 0.9907) and a low root mean square error for the prediction of phenolics (RMSE < 0.9437 mg GAE/g). The results of this study allow the design of efficient, economic and ecologically friendly extraction procedures in the industry for obtaining bioactive metabolites from avocado residues.Universidad Nacional de Trujillo2021-02-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295Scientia Agropecuaria; Vol. 12 Núm. 1 (2021): Enero - Marzo; 33-40Scientia Agropecuaria; Vol. 12 No. 1 (2021): Enero - Marzo; 33-402306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295/6707https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295/4016Derechos de autor 2021 Raúl Siche, Gabriela Becerra, Elza Aguirre, Gilbert Rodríguez, Eudes Villanuevahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/32952021-07-20T17:11:42Z |
dc.title.none.fl_str_mv |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks |
title |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks |
spellingShingle |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks Monzón, Lisbeth Avocado residues ultrasound-assisted extraction phenolic components response surface methodology artificial neural network |
title_short |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks |
title_full |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks |
title_fullStr |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks |
title_full_unstemmed |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks |
title_sort |
Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks |
dc.creator.none.fl_str_mv |
Monzón, Lisbeth Becerra, Gabriela Aguirre, Elza Rodríguez, Gilbert Villanueva, Eudes |
author |
Monzón, Lisbeth |
author_facet |
Monzón, Lisbeth Becerra, Gabriela Aguirre, Elza Rodríguez, Gilbert Villanueva, Eudes |
author_role |
author |
author2 |
Becerra, Gabriela Aguirre, Elza Rodríguez, Gilbert Villanueva, Eudes |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Avocado residues ultrasound-assisted extraction phenolic components response surface methodology artificial neural network |
topic |
Avocado residues ultrasound-assisted extraction phenolic components response surface methodology artificial neural network |
description |
Seed and peel avocado (Persea Americana) are agro-industrial residues whose structure presents an important quantity of source of polyphenolic components which can be obtained by various extraction methods. Response surface methodology (RSM) and the artificial neural network (ANN) were used to model and optimize the conditions of ultrasound-assisted extraction (UAE) (25 W/L) with respect to temperature (40 - 60 °C), concentration of ethanol/water (30% - 60%) and extraction time (40 - 80 min) in obtaining phenolic from avocado residues. RSM and ANN allowed finding an optimal phenolic content for seeds (145.170 - 146.569 mg GAE/g; 49 °C, 41.2% and 65.5 - 65.1 min) and peels (124.050 - 125.187 mg GAE/g; 50.9 °C, 49.5% and 61.8 min). The models estimated between predicted and experimental values were significant (p < 0.05), presenting a high correlation (R2> 0.9907) and a low root mean square error for the prediction of phenolics (RMSE < 0.9437 mg GAE/g). The results of this study allow the design of efficient, economic and ecologically friendly extraction procedures in the industry for obtaining bioactive metabolites from avocado residues. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295 |
url |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295/6707 https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295/4016 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
publisher.none.fl_str_mv |
Universidad Nacional de Trujillo |
dc.source.none.fl_str_mv |
Scientia Agropecuaria; Vol. 12 Núm. 1 (2021): Enero - Marzo; 33-40 Scientia Agropecuaria; Vol. 12 No. 1 (2021): Enero - Marzo; 33-40 2306-6741 2077-9917 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845886912864190464 |
score |
13.02468 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).