Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks

Descripción del Articulo

Seed and peel avocado (Persea Americana) are agro-industrial residues whose structure presents an important quantity of source of polyphenolic components which can be obtained by various extraction methods. Response surface methodology (RSM) and the artificial neural network (ANN) were used to model...

Descripción completa

Detalles Bibliográficos
Autores: Monzón, Lisbeth, Becerra, Gabriela, Aguirre, Elza, Rodríguez, Gilbert, Villanueva, Eudes
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/3295
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295
Nivel de acceso:acceso abierto
Materia:Avocado residues
ultrasound-assisted extraction
phenolic components
response surface methodology
artificial neural network
id REVUNITRU_1d7fc2dfb4ebb31197c761832953e8a4
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/3295
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networksMonzón, LisbethBecerra, Gabriela Aguirre, Elza Rodríguez, Gilbert Villanueva, Eudes Avocado residuesultrasound-assisted extractionphenolic componentsresponse surface methodologyartificial neural networkSeed and peel avocado (Persea Americana) are agro-industrial residues whose structure presents an important quantity of source of polyphenolic components which can be obtained by various extraction methods. Response surface methodology (RSM) and the artificial neural network (ANN) were used to model and optimize the conditions of ultrasound-assisted extraction (UAE) (25 W/L) with respect to temperature (40 - 60 °C), concentration of ethanol/water (30% - 60%) and extraction time (40 - 80 min) in obtaining phenolic from avocado residues. RSM and ANN allowed finding an optimal phenolic content for seeds (145.170 - 146.569 mg GAE/g; 49 °C, 41.2% and 65.5 - 65.1 min) and peels (124.050 - 125.187 mg GAE/g; 50.9 °C, 49.5% and 61.8 min). The models estimated between predicted and experimental values were significant (p < 0.05), presenting a high correlation (R2> 0.9907) and a low root mean square error for the prediction of phenolics (RMSE < 0.9437 mg GAE/g). The results of this study allow the design of efficient, economic and ecologically friendly extraction procedures in the industry for obtaining bioactive metabolites from avocado residues.Universidad Nacional de Trujillo2021-02-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlapplication/pdfhttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295Scientia Agropecuaria; Vol. 12 Núm. 1 (2021): Enero - Marzo; 33-40Scientia Agropecuaria; Vol. 12 No. 1 (2021): Enero - Marzo; 33-402306-67412077-9917reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUenghttps://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295/6707https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295/4016Derechos de autor 2021 Raúl Siche, Gabriela Becerra, Elza Aguirre, Gilbert Rodríguez, Eudes Villanuevahttps://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/32952021-07-20T17:11:42Z
dc.title.none.fl_str_mv Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
title Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
spellingShingle Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
Monzón, Lisbeth
Avocado residues
ultrasound-assisted extraction
phenolic components
response surface methodology
artificial neural network
title_short Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
title_full Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
title_fullStr Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
title_full_unstemmed Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
title_sort Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks
dc.creator.none.fl_str_mv Monzón, Lisbeth
Becerra, Gabriela
Aguirre, Elza
Rodríguez, Gilbert
Villanueva, Eudes
author Monzón, Lisbeth
author_facet Monzón, Lisbeth
Becerra, Gabriela
Aguirre, Elza
Rodríguez, Gilbert
Villanueva, Eudes
author_role author
author2 Becerra, Gabriela
Aguirre, Elza
Rodríguez, Gilbert
Villanueva, Eudes
author2_role author
author
author
author
dc.subject.none.fl_str_mv Avocado residues
ultrasound-assisted extraction
phenolic components
response surface methodology
artificial neural network
topic Avocado residues
ultrasound-assisted extraction
phenolic components
response surface methodology
artificial neural network
description Seed and peel avocado (Persea Americana) are agro-industrial residues whose structure presents an important quantity of source of polyphenolic components which can be obtained by various extraction methods. Response surface methodology (RSM) and the artificial neural network (ANN) were used to model and optimize the conditions of ultrasound-assisted extraction (UAE) (25 W/L) with respect to temperature (40 - 60 °C), concentration of ethanol/water (30% - 60%) and extraction time (40 - 80 min) in obtaining phenolic from avocado residues. RSM and ANN allowed finding an optimal phenolic content for seeds (145.170 - 146.569 mg GAE/g; 49 °C, 41.2% and 65.5 - 65.1 min) and peels (124.050 - 125.187 mg GAE/g; 50.9 °C, 49.5% and 61.8 min). The models estimated between predicted and experimental values were significant (p < 0.05), presenting a high correlation (R2> 0.9907) and a low root mean square error for the prediction of phenolics (RMSE < 0.9437 mg GAE/g). The results of this study allow the design of efficient, economic and ecologically friendly extraction procedures in the industry for obtaining bioactive metabolites from avocado residues.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295
url https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295/6707
https://revistas.unitru.edu.pe/index.php/scientiaagrop/article/view/3295/4016
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Trujillo
publisher.none.fl_str_mv Universidad Nacional de Trujillo
dc.source.none.fl_str_mv Scientia Agropecuaria; Vol. 12 Núm. 1 (2021): Enero - Marzo; 33-40
Scientia Agropecuaria; Vol. 12 No. 1 (2021): Enero - Marzo; 33-40
2306-6741
2077-9917
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845886912864190464
score 13.02468
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).