MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART

Descripción del Articulo

In the modeling of many problems on linear optimization is not possible to consider the classic deterministic model because the set of parameters is not fully known due to the significant variation of the data along time or because there is no uniformity on the values. These kind of problems are kno...

Descripción completa

Detalles Bibliográficos
Autores: Malca Arroyo, Edith, Vergara Moreno, Edmundo, Gutiérrez Segura, Flabio, Asmat Uceda, Rafael
Formato: artículo
Fecha de Publicación:2015
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:español
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/1236
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236
Nivel de acceso:acceso abierto
Materia:Optimization
uncertainty
Optimización
incertidumbre
id REVUNITRU_07e4ce1c2626240d3f2d867e53caeb70
oai_identifier_str oai:ojs.revistas.unitru.edu.pe:article/1236
network_acronym_str REVUNITRU
network_name_str Revistas - Universidad Nacional de Trujillo
repository_id_str
spelling MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ARTMODELOS Y MÉTODOS DE OPTIMIZACIÓN LINEAL CON INCERTIDUMBRE: UNA BREVE REVISIÓN DEL ESTADO DEL ARTEMalca Arroyo, EdithVergara Moreno, EdmundoGutiérrez Segura, FlabioAsmat Uceda, RafaelOptimizationuncertaintyOptimizaciónincertidumbreIn the modeling of many problems on linear optimization is not possible to consider the classic deterministic model because the set of parameters is not fully known due to the significant variation of the data along time or because there is no uniformity on the values. These kind of problems are known as problems with uncertainty and there are different approaches about modeling and methods of solution to resolve them. In this paper we make a review of such approaches focusing basically in stochastic optimization, fuzzy optimization, intervaling optimization and hybrid optimization. The difference between these approaches is perceived in the nature of the data, notions of feasibility and optimality and computational requirements, among others.En la modelación de muchos problemas de optimización lineal no es posible considerar el modelo clásico determinista, porque el conjunto de los parámetros no son completamente conocidos debido a que los datos varian en forma significativa a lo largo del tiempo o porque no hay homogeneidad en los valores.Estos problemas son conocidos como problemas con incertidumbre, para los cuales existen diversos enfoques en la modelación y en los métodos de solución. En este artículo se revisa tales enfoques, incidiendo fundamentalmente en la optimización estocástica, optimización difusa, optimización intervalar y optimización híbrida. La diferencia entre estos enfoques se perciben en la naturaleza de los datos, nociones de factibilidad y optimalidad, requerimientos computacionales, entre otros.National University of Trujillo - Academic Department of Mathematics2015-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236Selecciones Matemáticas; Vol. 2 No. 02 (2015): August - December; 76-82Selecciones Matemáticas; Vol. 2 Núm. 02 (2015): Agosto - Diciembre; 76-82Selecciones Matemáticas; v. 2 n. 02 (2015): Agosto - Diciembre; 76-822411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236/2391https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236/2392Derechos de autor 2017 Selecciones Matemáticasinfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/12362022-10-21T18:55:50Z
dc.title.none.fl_str_mv MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
MODELOS Y MÉTODOS DE OPTIMIZACIÓN LINEAL CON INCERTIDUMBRE: UNA BREVE REVISIÓN DEL ESTADO DEL ARTE
title MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
spellingShingle MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
Malca Arroyo, Edith
Optimization
uncertainty
Optimización
incertidumbre
title_short MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
title_full MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
title_fullStr MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
title_full_unstemmed MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
title_sort MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
dc.creator.none.fl_str_mv Malca Arroyo, Edith
Vergara Moreno, Edmundo
Gutiérrez Segura, Flabio
Asmat Uceda, Rafael
author Malca Arroyo, Edith
author_facet Malca Arroyo, Edith
Vergara Moreno, Edmundo
Gutiérrez Segura, Flabio
Asmat Uceda, Rafael
author_role author
author2 Vergara Moreno, Edmundo
Gutiérrez Segura, Flabio
Asmat Uceda, Rafael
author2_role author
author
author
dc.subject.none.fl_str_mv Optimization
uncertainty
Optimización
incertidumbre
topic Optimization
uncertainty
Optimización
incertidumbre
description In the modeling of many problems on linear optimization is not possible to consider the classic deterministic model because the set of parameters is not fully known due to the significant variation of the data along time or because there is no uniformity on the values. These kind of problems are known as problems with uncertainty and there are different approaches about modeling and methods of solution to resolve them. In this paper we make a review of such approaches focusing basically in stochastic optimization, fuzzy optimization, intervaling optimization and hybrid optimization. The difference between these approaches is perceived in the nature of the data, notions of feasibility and optimality and computational requirements, among others.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-28
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236/2391
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236/2392
dc.rights.none.fl_str_mv Derechos de autor 2017 Selecciones Matemáticas
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2017 Selecciones Matemáticas
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
publisher.none.fl_str_mv National University of Trujillo - Academic Department of Mathematics
dc.source.none.fl_str_mv Selecciones Matemáticas; Vol. 2 No. 02 (2015): August - December; 76-82
Selecciones Matemáticas; Vol. 2 Núm. 02 (2015): Agosto - Diciembre; 76-82
Selecciones Matemáticas; v. 2 n. 02 (2015): Agosto - Diciembre; 76-82
2411-1783
reponame:Revistas - Universidad Nacional de Trujillo
instname:Universidad Nacional de Trujillo
instacron:UNITRU
instname_str Universidad Nacional de Trujillo
instacron_str UNITRU
institution UNITRU
reponame_str Revistas - Universidad Nacional de Trujillo
collection Revistas - Universidad Nacional de Trujillo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845886941885628416
score 13.361153
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).