MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART
Descripción del Articulo
In the modeling of many problems on linear optimization is not possible to consider the classic deterministic model because the set of parameters is not fully known due to the significant variation of the data along time or because there is no uniformity on the values. These kind of problems are kno...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2015 |
Institución: | Universidad Nacional de Trujillo |
Repositorio: | Revistas - Universidad Nacional de Trujillo |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.unitru.edu.pe:article/1236 |
Enlace del recurso: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236 |
Nivel de acceso: | acceso abierto |
Materia: | Optimization uncertainty Optimización incertidumbre |
id |
REVUNITRU_07e4ce1c2626240d3f2d867e53caeb70 |
---|---|
oai_identifier_str |
oai:ojs.revistas.unitru.edu.pe:article/1236 |
network_acronym_str |
REVUNITRU |
network_name_str |
Revistas - Universidad Nacional de Trujillo |
repository_id_str |
|
spelling |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ARTMODELOS Y MÉTODOS DE OPTIMIZACIÓN LINEAL CON INCERTIDUMBRE: UNA BREVE REVISIÓN DEL ESTADO DEL ARTEMalca Arroyo, EdithVergara Moreno, EdmundoGutiérrez Segura, FlabioAsmat Uceda, RafaelOptimizationuncertaintyOptimizaciónincertidumbreIn the modeling of many problems on linear optimization is not possible to consider the classic deterministic model because the set of parameters is not fully known due to the significant variation of the data along time or because there is no uniformity on the values. These kind of problems are known as problems with uncertainty and there are different approaches about modeling and methods of solution to resolve them. In this paper we make a review of such approaches focusing basically in stochastic optimization, fuzzy optimization, intervaling optimization and hybrid optimization. The difference between these approaches is perceived in the nature of the data, notions of feasibility and optimality and computational requirements, among others.En la modelación de muchos problemas de optimización lineal no es posible considerar el modelo clásico determinista, porque el conjunto de los parámetros no son completamente conocidos debido a que los datos varian en forma significativa a lo largo del tiempo o porque no hay homogeneidad en los valores.Estos problemas son conocidos como problemas con incertidumbre, para los cuales existen diversos enfoques en la modelación y en los métodos de solución. En este artículo se revisa tales enfoques, incidiendo fundamentalmente en la optimización estocástica, optimización difusa, optimización intervalar y optimización híbrida. La diferencia entre estos enfoques se perciben en la naturaleza de los datos, nociones de factibilidad y optimalidad, requerimientos computacionales, entre otros.National University of Trujillo - Academic Department of Mathematics2015-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236Selecciones Matemáticas; Vol. 2 No. 02 (2015): August - December; 76-82Selecciones Matemáticas; Vol. 2 Núm. 02 (2015): Agosto - Diciembre; 76-82Selecciones Matemáticas; v. 2 n. 02 (2015): Agosto - Diciembre; 76-822411-1783reponame:Revistas - Universidad Nacional de Trujilloinstname:Universidad Nacional de Trujilloinstacron:UNITRUspahttps://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236/2391https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236/2392Derechos de autor 2017 Selecciones Matemáticasinfo:eu-repo/semantics/openAccessoai:ojs.revistas.unitru.edu.pe:article/12362022-10-21T18:55:50Z |
dc.title.none.fl_str_mv |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART MODELOS Y MÉTODOS DE OPTIMIZACIÓN LINEAL CON INCERTIDUMBRE: UNA BREVE REVISIÓN DEL ESTADO DEL ARTE |
title |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART |
spellingShingle |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART Malca Arroyo, Edith Optimization uncertainty Optimización incertidumbre |
title_short |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART |
title_full |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART |
title_fullStr |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART |
title_full_unstemmed |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART |
title_sort |
MODELS AND METHODS OF LINEAR OPTIMIZATION WITH UNCERTAINTY: A BRIEF REVIEW OF THE STATE OF THE ART |
dc.creator.none.fl_str_mv |
Malca Arroyo, Edith Vergara Moreno, Edmundo Gutiérrez Segura, Flabio Asmat Uceda, Rafael |
author |
Malca Arroyo, Edith |
author_facet |
Malca Arroyo, Edith Vergara Moreno, Edmundo Gutiérrez Segura, Flabio Asmat Uceda, Rafael |
author_role |
author |
author2 |
Vergara Moreno, Edmundo Gutiérrez Segura, Flabio Asmat Uceda, Rafael |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Optimization uncertainty Optimización incertidumbre |
topic |
Optimization uncertainty Optimización incertidumbre |
description |
In the modeling of many problems on linear optimization is not possible to consider the classic deterministic model because the set of parameters is not fully known due to the significant variation of the data along time or because there is no uniformity on the values. These kind of problems are known as problems with uncertainty and there are different approaches about modeling and methods of solution to resolve them. In this paper we make a review of such approaches focusing basically in stochastic optimization, fuzzy optimization, intervaling optimization and hybrid optimization. The difference between these approaches is perceived in the nature of the data, notions of feasibility and optimality and computational requirements, among others. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236 |
url |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236/2391 https://revistas.unitru.edu.pe/index.php/SSMM/article/view/1236/2392 |
dc.rights.none.fl_str_mv |
Derechos de autor 2017 Selecciones Matemáticas info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2017 Selecciones Matemáticas |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
publisher.none.fl_str_mv |
National University of Trujillo - Academic Department of Mathematics |
dc.source.none.fl_str_mv |
Selecciones Matemáticas; Vol. 2 No. 02 (2015): August - December; 76-82 Selecciones Matemáticas; Vol. 2 Núm. 02 (2015): Agosto - Diciembre; 76-82 Selecciones Matemáticas; v. 2 n. 02 (2015): Agosto - Diciembre; 76-82 2411-1783 reponame:Revistas - Universidad Nacional de Trujillo instname:Universidad Nacional de Trujillo instacron:UNITRU |
instname_str |
Universidad Nacional de Trujillo |
instacron_str |
UNITRU |
institution |
UNITRU |
reponame_str |
Revistas - Universidad Nacional de Trujillo |
collection |
Revistas - Universidad Nacional de Trujillo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845886941885628416 |
score |
13.361153 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).