Improve electronic trade in the fashion: models for predict and algorithms to increase sales
Descripción del Articulo
Objective: This study analyzes how predictive models and AI algorithms influence fashion electronic trade optimization, assessing their impact on personalizing the user experience and increasing sales. Materials and methods: A quantitative approach with a non-experimental, cross-sectional, and corre...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Universidad Nacional Hermilio Valdizan |
Repositorio: | Revistas - Universidad Nacional Hermilio Valdizán |
Lenguaje: | español |
OAI Identifier: | oai:revistas.unheval.edu.pe:article/2357 |
Enlace del recurso: | http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357 |
Nivel de acceso: | acceso abierto |
Materia: | e-commerce inteligencia artificial modelos predictivos personalización de experiencia artificial intelligence predictive models experience personalization |
id |
REVUNHEVAL_87105612c821f3cd92b022a0379a9187 |
---|---|
oai_identifier_str |
oai:revistas.unheval.edu.pe:article/2357 |
network_acronym_str |
REVUNHEVAL |
network_name_str |
Revistas - Universidad Nacional Hermilio Valdizán |
repository_id_str |
|
dc.title.none.fl_str_mv |
Improve electronic trade in the fashion: models for predict and algorithms to increase sales Mejorar el comercio electrónico en la moda: modelos para predecir y algoritmos para aumentar las ventas |
title |
Improve electronic trade in the fashion: models for predict and algorithms to increase sales |
spellingShingle |
Improve electronic trade in the fashion: models for predict and algorithms to increase sales Quique Cobos, Dalia Esther e-commerce inteligencia artificial modelos predictivos personalización de experiencia e-commerce artificial intelligence predictive models experience personalization |
title_short |
Improve electronic trade in the fashion: models for predict and algorithms to increase sales |
title_full |
Improve electronic trade in the fashion: models for predict and algorithms to increase sales |
title_fullStr |
Improve electronic trade in the fashion: models for predict and algorithms to increase sales |
title_full_unstemmed |
Improve electronic trade in the fashion: models for predict and algorithms to increase sales |
title_sort |
Improve electronic trade in the fashion: models for predict and algorithms to increase sales |
dc.creator.none.fl_str_mv |
Quique Cobos, Dalia Esther Cobos Gutierrez, Carlos Eduardo |
author |
Quique Cobos, Dalia Esther |
author_facet |
Quique Cobos, Dalia Esther Cobos Gutierrez, Carlos Eduardo |
author_role |
author |
author2 |
Cobos Gutierrez, Carlos Eduardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
e-commerce inteligencia artificial modelos predictivos personalización de experiencia e-commerce artificial intelligence predictive models experience personalization |
topic |
e-commerce inteligencia artificial modelos predictivos personalización de experiencia e-commerce artificial intelligence predictive models experience personalization |
description |
Objective: This study analyzes how predictive models and AI algorithms influence fashion electronic trade optimization, assessing their impact on personalizing the user experience and increasing sales. Materials and methods: A quantitative approach with a non-experimental, cross-sectional, and correlational design was used, applying surveys to 50 fashion retail companies with an online presence, and to 500 consumers active on electronic trade platforms. Data were collected through surveys and databases, analyzing factors such as the implementation of artificial intelligence, the conversion rate, and the customer loyalty. For the analysis, descriptive and inferential statistics tests, including correlation and regression analysis, were used for the analysis. Results: The results evidence that AI has a significant impact on sales and customer loyalty, with a positive correlation (r = 0.87; p < 0.001) between AI-based personalization and loyalty of the user. Furthermore, companies with the highest use of AI were found to achieve a conversion rate of 9.8%, while those with the lowest use achieved only 3.2%. Regression analysis indicates that predictive models used in product recommendation strategies significantly improved sales, highlighting the importance of automation in consumer decision-making. Conclusions: It is concluded that AI is a key advantage in fashion electronic trade, enabling a more personalized and effective experience. The implementation of predictive models and machine learning algorithms not only optimizes sales but also strengthens the relationship between brands and their customers. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-01-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357 10.46794/gacien.11.1.2357 |
url |
http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357 |
identifier_str_mv |
10.46794/gacien.11.1.2357 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357/2088 http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357/2103 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Escuela de PosGrado - Universidad Nacional Hermilio Valdizán |
publisher.none.fl_str_mv |
Escuela de PosGrado - Universidad Nacional Hermilio Valdizán |
dc.source.none.fl_str_mv |
Gaceta Científica; Vol. 11 Núm. 1 (2025) 2617-4332 2414-2832 reponame:Revistas - Universidad Nacional Hermilio Valdizán instname:Universidad Nacional Hermilio Valdizan instacron:UNHEVAL |
instname_str |
Universidad Nacional Hermilio Valdizan |
instacron_str |
UNHEVAL |
institution |
UNHEVAL |
reponame_str |
Revistas - Universidad Nacional Hermilio Valdizán |
collection |
Revistas - Universidad Nacional Hermilio Valdizán |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845702505730670592 |
spelling |
Improve electronic trade in the fashion: models for predict and algorithms to increase salesMejorar el comercio electrónico en la moda: modelos para predecir y algoritmos para aumentar las ventasQuique Cobos, Dalia EstherCobos Gutierrez, Carlos Eduardoe-commerceinteligencia artificialmodelos predictivospersonalización de experienciae-commerceartificial intelligencepredictive modelsexperience personalizationObjective: This study analyzes how predictive models and AI algorithms influence fashion electronic trade optimization, assessing their impact on personalizing the user experience and increasing sales. Materials and methods: A quantitative approach with a non-experimental, cross-sectional, and correlational design was used, applying surveys to 50 fashion retail companies with an online presence, and to 500 consumers active on electronic trade platforms. Data were collected through surveys and databases, analyzing factors such as the implementation of artificial intelligence, the conversion rate, and the customer loyalty. For the analysis, descriptive and inferential statistics tests, including correlation and regression analysis, were used for the analysis. Results: The results evidence that AI has a significant impact on sales and customer loyalty, with a positive correlation (r = 0.87; p < 0.001) between AI-based personalization and loyalty of the user. Furthermore, companies with the highest use of AI were found to achieve a conversion rate of 9.8%, while those with the lowest use achieved only 3.2%. Regression analysis indicates that predictive models used in product recommendation strategies significantly improved sales, highlighting the importance of automation in consumer decision-making. Conclusions: It is concluded that AI is a key advantage in fashion electronic trade, enabling a more personalized and effective experience. The implementation of predictive models and machine learning algorithms not only optimizes sales but also strengthens the relationship between brands and their customers.Objetivo: Este estudio analiza cómo los modelos predictivos y los algoritmos de IA influyen en la optimización del comercio electrónico de moda, evaluando su impacto en la personalización de la experiencia del usuario y el aumento de las ventas. Materiales y métodos: Se utilizó un enfoque cuantitativo con un diseño no experimental, transversal y correlacional, aplicando encuestas a 50 empresas de retail de moda con presencia en línea y a 500 consumidores activos en plataformas de comercio electrónico. Se recopilaron datos mediante encuestas y bases de datos, analizando factores como la implementación de inteligencia artificial, la tasa de conversión y la lealtad del cliente. Para el análisis se emplearon pruebas estadísticas descriptivas e inferenciales, incluyendo análisis de correlación y regresión. Resultados: Los resultados evidencian que la IA tiene un impacto significativo en las ventas y la fidelidad de los clientes, con una correlación positiva (r = 0,87; p < 0,001) entre la personalización basada en IA y la lealtad del usuario. Además, se encontró que las empresas con mayor uso de IA lograron una tasa de conversión del 9,8 %, mientras que aquellas con menor implementación alcanzaron solo un 3,2 %. El análisis de regresión inidica que los modelos predictivos utilizados en estrategias de recomendación de productos mejoraron notablemente las ventas, destacando la importancia de la automatización en la toma de decisiones del consumidor. Conclusiones: Se concluye que la IA es una ventaja clave en el comercio electrónico de moda, ya que permite una experiencia más personalizada y efectiva. La implementación de modelos predictivos y algoritmos de aprendizaje automático no solo optimiza las ventas, sino que también fortalece la relación entre las marcas y sus clientes.Escuela de PosGrado - Universidad Nacional Hermilio Valdizán2025-01-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.unheval.edu.pe/index.php/gacien/article/view/235710.46794/gacien.11.1.2357Gaceta Científica; Vol. 11 Núm. 1 (2025)2617-43322414-2832reponame:Revistas - Universidad Nacional Hermilio Valdizáninstname:Universidad Nacional Hermilio Valdizaninstacron:UNHEVALspahttp://revistas.unheval.edu.pe/index.php/gacien/article/view/2357/2088http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357/2103https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.unheval.edu.pe:article/23572025-05-07T02:28:05Z |
score |
13.04064 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).