Improve electronic trade in the fashion: models for predict and algorithms to increase sales

Descripción del Articulo

Objective: This study analyzes how predictive models and AI algorithms influence fashion electronic trade optimization, assessing their impact on personalizing the user experience and increasing sales. Materials and methods: A quantitative approach with a non-experimental, cross-sectional, and corre...

Descripción completa

Detalles Bibliográficos
Autores: Quique Cobos, Dalia Esther, Cobos Gutierrez, Carlos Eduardo
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional Hermilio Valdizan
Repositorio:Revistas - Universidad Nacional Hermilio Valdizán
Lenguaje:español
OAI Identifier:oai:revistas.unheval.edu.pe:article/2357
Enlace del recurso:http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357
Nivel de acceso:acceso abierto
Materia:e-commerce
inteligencia artificial
modelos predictivos
personalización de experiencia
artificial intelligence
predictive models
experience personalization
id REVUNHEVAL_87105612c821f3cd92b022a0379a9187
oai_identifier_str oai:revistas.unheval.edu.pe:article/2357
network_acronym_str REVUNHEVAL
network_name_str Revistas - Universidad Nacional Hermilio Valdizán
repository_id_str
dc.title.none.fl_str_mv Improve electronic trade in the fashion: models for predict and algorithms to increase sales
Mejorar el comercio electrónico en la moda: modelos para predecir y algoritmos para aumentar las ventas
title Improve electronic trade in the fashion: models for predict and algorithms to increase sales
spellingShingle Improve electronic trade in the fashion: models for predict and algorithms to increase sales
Quique Cobos, Dalia Esther
e-commerce
inteligencia artificial
modelos predictivos
personalización de experiencia
e-commerce
artificial intelligence
predictive models
experience personalization
title_short Improve electronic trade in the fashion: models for predict and algorithms to increase sales
title_full Improve electronic trade in the fashion: models for predict and algorithms to increase sales
title_fullStr Improve electronic trade in the fashion: models for predict and algorithms to increase sales
title_full_unstemmed Improve electronic trade in the fashion: models for predict and algorithms to increase sales
title_sort Improve electronic trade in the fashion: models for predict and algorithms to increase sales
dc.creator.none.fl_str_mv Quique Cobos, Dalia Esther
Cobos Gutierrez, Carlos Eduardo
author Quique Cobos, Dalia Esther
author_facet Quique Cobos, Dalia Esther
Cobos Gutierrez, Carlos Eduardo
author_role author
author2 Cobos Gutierrez, Carlos Eduardo
author2_role author
dc.subject.none.fl_str_mv e-commerce
inteligencia artificial
modelos predictivos
personalización de experiencia
e-commerce
artificial intelligence
predictive models
experience personalization
topic e-commerce
inteligencia artificial
modelos predictivos
personalización de experiencia
e-commerce
artificial intelligence
predictive models
experience personalization
description Objective: This study analyzes how predictive models and AI algorithms influence fashion electronic trade optimization, assessing their impact on personalizing the user experience and increasing sales. Materials and methods: A quantitative approach with a non-experimental, cross-sectional, and correlational design was used, applying surveys to 50 fashion retail companies with an online presence, and to 500 consumers active on electronic trade platforms. Data were collected through surveys and databases, analyzing factors such as the implementation of artificial intelligence, the conversion rate, and the customer loyalty. For the analysis, descriptive and inferential statistics tests, including correlation and regression analysis, were used for the analysis. Results: The results evidence that AI has a significant impact on sales and customer loyalty, with a positive correlation (r = 0.87; p < 0.001) between AI-based personalization and loyalty of the user. Furthermore, companies with the highest use of AI were found to achieve a conversion rate of 9.8%, while those with the lowest use achieved only 3.2%. Regression analysis indicates that predictive models used in product recommendation strategies significantly improved sales, highlighting the importance of automation in consumer decision-making. Conclusions: It is concluded that AI is a key advantage in fashion electronic trade, enabling a more personalized and effective experience. The implementation of predictive models and machine learning algorithms not only optimizes sales but also strengthens the relationship between brands and their customers.
publishDate 2025
dc.date.none.fl_str_mv 2025-01-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357
10.46794/gacien.11.1.2357
url http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357
identifier_str_mv 10.46794/gacien.11.1.2357
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357/2088
http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357/2103
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Escuela de PosGrado - Universidad Nacional Hermilio Valdizán
publisher.none.fl_str_mv Escuela de PosGrado - Universidad Nacional Hermilio Valdizán
dc.source.none.fl_str_mv Gaceta Científica; Vol. 11 Núm. 1 (2025)
2617-4332
2414-2832
reponame:Revistas - Universidad Nacional Hermilio Valdizán
instname:Universidad Nacional Hermilio Valdizan
instacron:UNHEVAL
instname_str Universidad Nacional Hermilio Valdizan
instacron_str UNHEVAL
institution UNHEVAL
reponame_str Revistas - Universidad Nacional Hermilio Valdizán
collection Revistas - Universidad Nacional Hermilio Valdizán
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845702505730670592
spelling Improve electronic trade in the fashion: models for predict and algorithms to increase salesMejorar el comercio electrónico en la moda: modelos para predecir y algoritmos para aumentar las ventasQuique Cobos, Dalia EstherCobos Gutierrez, Carlos Eduardoe-commerceinteligencia artificialmodelos predictivospersonalización de experienciae-commerceartificial intelligencepredictive modelsexperience personalizationObjective: This study analyzes how predictive models and AI algorithms influence fashion electronic trade optimization, assessing their impact on personalizing the user experience and increasing sales. Materials and methods: A quantitative approach with a non-experimental, cross-sectional, and correlational design was used, applying surveys to 50 fashion retail companies with an online presence, and to 500 consumers active on electronic trade platforms. Data were collected through surveys and databases, analyzing factors such as the implementation of artificial intelligence, the conversion rate, and the customer loyalty. For the analysis, descriptive and inferential statistics tests, including correlation and regression analysis, were used for the analysis. Results: The results evidence that AI has a significant impact on sales and customer loyalty, with a positive correlation (r = 0.87; p < 0.001) between AI-based personalization and loyalty of the user. Furthermore, companies with the highest use of AI were found to achieve a conversion rate of 9.8%, while those with the lowest use achieved only 3.2%. Regression analysis indicates that predictive models used in product recommendation strategies significantly improved sales, highlighting the importance of automation in consumer decision-making. Conclusions: It is concluded that AI is a key advantage in fashion electronic trade, enabling a more personalized and effective experience. The implementation of predictive models and machine learning algorithms not only optimizes sales but also strengthens the relationship between brands and their customers.Objetivo: Este estudio analiza cómo los modelos predictivos y los algoritmos de IA influyen en la optimización del comercio electrónico de moda, evaluando su impacto en la personalización de la experiencia del usuario y el aumento de las ventas. Materiales y métodos: Se utilizó un enfoque cuantitativo con un diseño no experimental, transversal y correlacional, aplicando encuestas a 50 empresas de retail de moda con presencia en línea y a 500 consumidores activos en plataformas de comercio electrónico. Se recopilaron datos mediante encuestas y bases de datos, analizando factores como la implementación de inteligencia artificial, la tasa de conversión y la lealtad del cliente. Para el análisis se emplearon pruebas estadísticas descriptivas e inferenciales, incluyendo análisis de correlación y regresión. Resultados: Los resultados evidencian que la IA tiene un impacto significativo en las ventas y la fidelidad de los clientes, con una correlación positiva (r = 0,87; p < 0,001) entre la personalización basada en IA y la lealtad del usuario. Además, se encontró que las empresas con mayor uso de IA lograron una tasa de conversión del 9,8 %, mientras que aquellas con menor implementación alcanzaron solo un 3,2 %. El análisis de regresión inidica que los modelos predictivos utilizados en estrategias de recomendación de productos mejoraron notablemente las ventas, destacando la importancia de la automatización en la toma de decisiones del consumidor. Conclusiones: Se concluye que la IA es una ventaja clave en el comercio electrónico de moda, ya que permite una experiencia más personalizada y efectiva. La implementación de modelos predictivos y algoritmos de aprendizaje automático no solo optimiza las ventas, sino que también fortalece la relación entre las marcas y sus clientes.Escuela de PosGrado - Universidad Nacional Hermilio Valdizán2025-01-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttp://revistas.unheval.edu.pe/index.php/gacien/article/view/235710.46794/gacien.11.1.2357Gaceta Científica; Vol. 11 Núm. 1 (2025)2617-43322414-2832reponame:Revistas - Universidad Nacional Hermilio Valdizáninstname:Universidad Nacional Hermilio Valdizaninstacron:UNHEVALspahttp://revistas.unheval.edu.pe/index.php/gacien/article/view/2357/2088http://revistas.unheval.edu.pe/index.php/gacien/article/view/2357/2103https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.unheval.edu.pe:article/23572025-05-07T02:28:05Z
score 13.04064
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).