Mathematical modelling of COVID-19 mortality in China

Descripción del Articulo

The objective of the work was to develop a mathematical model to analyze the behavior of mortality in the People’s Republic of China caused by COVID-2019. The logistic model was applied to the data reported in Table 1, between January 11 and April 12, 2020. The model formulated was linearized and pr...

Descripción completa

Detalles Bibliográficos
Autores: Marín Machuca, Olegario, Vargas Ayala, Jessica Blanca, Marín Sánchez, Ulert, Alvarado Zambrano, Fredy Anibal, Lon Kan Prado, Elena Elizabeth, Marín Sánchez, Obert
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad Nacional Federico Villarreal
Repositorio:Revistas - Universidad Nacional Federico Villarreal
Lenguaje:español
OAI Identifier:oai:ojs2.revistas.unfv.edu.pe:article/762
Enlace del recurso:https://revistas.unfv.edu.pe/RCV/article/view/762
Nivel de acceso:acceso abierto
Materia:behavior
coronavirus
logistical model
mortality
comportamiento
modelo logístico
mortalidad
id REVUNFV_5ef1bf07003c871d8e2f18630f333ee0
oai_identifier_str oai:ojs2.revistas.unfv.edu.pe:article/762
network_acronym_str REVUNFV
network_name_str Revistas - Universidad Nacional Federico Villarreal
repository_id_str .
spelling Mathematical modelling of COVID-19 mortality in ChinaModelamiento matemático de la mortalidad por COVID-19 en ChinaMarín Machuca, OlegarioVargas Ayala, Jessica BlancaMarín Sánchez, UlertAlvarado Zambrano, Fredy AnibalLon Kan Prado, Elena ElizabethMarín Sánchez, Obertbehaviorcoronaviruslogistical modelmortalitycomportamientocoronavirusmodelo logísticomortalidadThe objective of the work was to develop a mathematical model to analyze the behavior of mortality in the People’s Republic of China caused by COVID-2019. The logistic model was applied to the data reported in Table 1, between January 11 and April 12, 2020. The model formulated was linearized and presented in two forms, which, with the same value of B, introducing a correction factor for the independent variable, t, which serves as “period” and applying the method of minimum squares, the parameters A, k and r were determined, obtaining the respective model (Equation 10), which was analyzed with Pearson’s correlation coefficient, obtaining the correlation coefficient r=-0.9668 and the determination coefficient r^2×100=93.48 %; deducing the best estimate of the model to the process in modeling (Equation 10) to analyze the mortality phenomenon. Likewise, the mortality rate was evaluated, deriving, ordinarily, the best model (Equation 10), obtaining the speed model (Equation 11); describing the best behavior, determining that the maximum mortality rate was 118 persons/day, an event that occurred on 24 February 2020.Se ha desarrollado un modelo matemático que permita analizar el comportamiento de la mortalidad en la República Popular de China ocasionado por COVID-2019. Se aplicó el modelo logístico para los datos reportados entre 11 de enero y el 12 de abril del 2020. El modelo formulado fue linealizado y planteado en dos formas. La primera, evaluando el factor de corrección B, que hace las veces de cantidad máxima de fallecidos. Se determinaron los parámetros A, k y r, obteniendo el modelo (Ecuación 7), con un coeficiente de correlación r=-0,9660 y el coeficiente de determinación r^2×100=93,31 %. La segunda forma, con el mismo valor de B, introduciendo un factor de corrección para la variable independiente, t, que hace las veces de “periodo”. Se determinaron los parámetros A, k y r, obteniendo el modelo (Ecuación 10), con un coeficiente de correlación r=-0,9668 y el coeficiente de determinación r^2×100=93,48 %; lo que demuestra buena estimación del modelo (Ecuación 7 y Ecuación 10). Asimismo, se evaluó la velocidad de mortalidad, derivando, ordinariamente los modelos (Ecuación 7 y Ecuación 10), obteniendo los modelos de velocidad (Ecuación 8 y Ecuación 11); concluyendo que la máxima velocidad de mortalidad fue de 118 personas por día el día 24 de febrero de 2020.  Universidad Nacional Federico Villarreal2020-08-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlapplication/epub+ziptext/xmlhttps://revistas.unfv.edu.pe/RCV/article/view/762Cátedra Villarreal; Vol. 8 No. 1 (2020): Cátedra Villarreal; 35-43Cátedra Villarreal; Vol. 8 Núm. 1 (2020): Cátedra Villarreal; 35-432311-22122310-4767reponame:Revistas - Universidad Nacional Federico Villarrealinstname:Universidad Nacional Federico Villarrealinstacron:UNFVspahttps://revistas.unfv.edu.pe/RCV/article/view/762/1979https://revistas.unfv.edu.pe/RCV/article/view/762/1400https://revistas.unfv.edu.pe/RCV/article/view/762/1401https://revistas.unfv.edu.pe/RCV/article/view/762/1052Derechos de autor 2020 Cátedra Villarrealhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:ojs2.revistas.unfv.edu.pe:article/7622021-05-06T05:36:51Z
dc.title.none.fl_str_mv Mathematical modelling of COVID-19 mortality in China
Modelamiento matemático de la mortalidad por COVID-19 en China
title Mathematical modelling of COVID-19 mortality in China
spellingShingle Mathematical modelling of COVID-19 mortality in China
Marín Machuca, Olegario
behavior
coronavirus
logistical model
mortality
comportamiento
coronavirus
modelo logístico
mortalidad
title_short Mathematical modelling of COVID-19 mortality in China
title_full Mathematical modelling of COVID-19 mortality in China
title_fullStr Mathematical modelling of COVID-19 mortality in China
title_full_unstemmed Mathematical modelling of COVID-19 mortality in China
title_sort Mathematical modelling of COVID-19 mortality in China
dc.creator.none.fl_str_mv Marín Machuca, Olegario
Vargas Ayala, Jessica Blanca
Marín Sánchez, Ulert
Alvarado Zambrano, Fredy Anibal
Lon Kan Prado, Elena Elizabeth
Marín Sánchez, Obert
author Marín Machuca, Olegario
author_facet Marín Machuca, Olegario
Vargas Ayala, Jessica Blanca
Marín Sánchez, Ulert
Alvarado Zambrano, Fredy Anibal
Lon Kan Prado, Elena Elizabeth
Marín Sánchez, Obert
author_role author
author2 Vargas Ayala, Jessica Blanca
Marín Sánchez, Ulert
Alvarado Zambrano, Fredy Anibal
Lon Kan Prado, Elena Elizabeth
Marín Sánchez, Obert
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv behavior
coronavirus
logistical model
mortality
comportamiento
coronavirus
modelo logístico
mortalidad
topic behavior
coronavirus
logistical model
mortality
comportamiento
coronavirus
modelo logístico
mortalidad
description The objective of the work was to develop a mathematical model to analyze the behavior of mortality in the People’s Republic of China caused by COVID-2019. The logistic model was applied to the data reported in Table 1, between January 11 and April 12, 2020. The model formulated was linearized and presented in two forms, which, with the same value of B, introducing a correction factor for the independent variable, t, which serves as “period” and applying the method of minimum squares, the parameters A, k and r were determined, obtaining the respective model (Equation 10), which was analyzed with Pearson’s correlation coefficient, obtaining the correlation coefficient r=-0.9668 and the determination coefficient r^2×100=93.48 %; deducing the best estimate of the model to the process in modeling (Equation 10) to analyze the mortality phenomenon. Likewise, the mortality rate was evaluated, deriving, ordinarily, the best model (Equation 10), obtaining the speed model (Equation 11); describing the best behavior, determining that the maximum mortality rate was 118 persons/day, an event that occurred on 24 February 2020.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.unfv.edu.pe/RCV/article/view/762
url https://revistas.unfv.edu.pe/RCV/article/view/762
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unfv.edu.pe/RCV/article/view/762/1979
https://revistas.unfv.edu.pe/RCV/article/view/762/1400
https://revistas.unfv.edu.pe/RCV/article/view/762/1401
https://revistas.unfv.edu.pe/RCV/article/view/762/1052
dc.rights.none.fl_str_mv Derechos de autor 2020 Cátedra Villarreal
https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2020 Cátedra Villarreal
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
application/epub+zip
text/xml
dc.publisher.none.fl_str_mv Universidad Nacional Federico Villarreal
publisher.none.fl_str_mv Universidad Nacional Federico Villarreal
dc.source.none.fl_str_mv Cátedra Villarreal; Vol. 8 No. 1 (2020): Cátedra Villarreal; 35-43
Cátedra Villarreal; Vol. 8 Núm. 1 (2020): Cátedra Villarreal; 35-43
2311-2212
2310-4767
reponame:Revistas - Universidad Nacional Federico Villarreal
instname:Universidad Nacional Federico Villarreal
instacron:UNFV
instname_str Universidad Nacional Federico Villarreal
instacron_str UNFV
institution UNFV
reponame_str Revistas - Universidad Nacional Federico Villarreal
collection Revistas - Universidad Nacional Federico Villarreal
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1789172145482366976
score 13.904524
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).